簡易檢索 / 詳目顯示

研究生: 王健鴻
chien-hung wang
論文名稱: 開關式磁阻電動機的無轉軸偵測跑步機驅動系統性能改善之研究
Research on Performance Improvement for a Sensorless Switched Reluctance Running Machine Drive System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 徐國鎧
kuo-kai hsu
楊勝明
sheng-ming yang
林法正
fa-cheng lin
王乃堅
Nai-Jian Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 112
中文關鍵詞: 跑步機驅動系統開關式磁阻電動機.模糊比例積分控制器無轉軸角度偵測
外文關鍵詞: running machine drive system
相關次數: 點閱:316下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在探討開關式磁阻電動機的轉軸角度估測方法及其在跑步機的應用。文中,首先介紹開關式磁阻電動機之結構,原理及數學模式,其次,分別說明具轉軸角度偵測及無轉軸角度偵測驅動方法。其中,無轉軸角度偵測的方法,是利用偵測定子電流的斜率估算自感,進而估測轉軸角度。最後探討以模糊比例積分控制應用在開關式磁阻電動機的速度控制,以改善跑步機驅動系統速度追隨及干擾拒斥的能力。
本論文將開關式磁阻電動機應用在跑步機驅動系統,由無轉軸角度估測方法計算轉軸速度,完成閉迴路控速,電腦模擬及實測結果驗證本文所提出的方法確實可行。


The thesis proposes the rotor estimating technique for a switched reluctance motor with its application in a running machine drive system. In this thesis, first, the structure, principle, and mathematical model of the motor is introduced. Then, the drive systems with and without a rotor position sensor are discussed. The sensorless technique, which does not include any rotor position sensor, is proposed in this thesis by detecting the stator currents of the motor, computing the self inductance from the current slope, and then estimating the rotor position. Finally, a fuzzy PI controller is designed to control the motor speed and improve the tracking ability and load disturbance rejection capability.
This thesis uses the switched reluctance motor applying in a running machine system. Based on the proposed sensorless technique, a closed-loop adjustable speed system can be achieved. The simulated results and experimental results validate that the proposed method is feasible and correct.

中文摘要I 英文摘要II 目錄III 圖目錄VI 表目錄X 符號說明XI 第一章緒論1 1.1動機1 1.2文獻回顧2 1.3目的3 1.4大綱4 第二章 開關式磁阻電動機5 2.1簡介5 2.2數學模式8 2.3驅動原理12 第三章 開關式磁阻電動機驅動原理15 3.1簡介15 3.2功率轉換器16 3.3轉矩及弱磁控制25 3.4四象限轉矩控制27 第四章 無轉軸偵測元件驅動系統30 4.1簡介30 4.2轉軸角/速度估測方法32 4.2.1電動機自感估測33 4.2.2電動機自感量測與轉軸角度估測35 4.2.3啟動方法39 4.2.4閉迴路控制系統40 4.3估測誤差分析41 第五章 控制器設計44 5.1簡介44 5.2模糊理論44 5.3模糊控制器設計46 5.3.1 輸入及輸出變數47 5.3.2 正規化處理47 5.3.3 語言項及歸屬函數51 5.3.4控制規則53 5.3.5 推論法則及解模糊化56 第六章 系統研製59 6.1簡介59 6.2硬體電路製作59 6.2.1功率轉換器60 6.2.2回授及偵測電路62 6.2.3數位信號處理器64 6.2.4跑步機結構65 6.3軟體程式設計66 6.3.1主程式66 6.3.2中斷服務程式67 第七章 模擬與實測69 7.1簡介69 7.2電腦模擬70 7.3模擬與實測結果73 第八章 結論與建議106 參考文獻107 作者簡介112

[1]B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Trans. Ind. Appl., vol. 29, no. 5, pp. 902 – 909, Sept./Oct. 1993.
[2]G. C. Verghese and S. R. Sanders, “Observers for flux estimation in induction machines,” IEEE Trans. Ind. Electron., vol. 35, no. 1, pp. 85 – 94, Feb. 1988.
[3]P. Pillay and R. Krishnan, “Application characteristics of permanent magnet synchronous and brushless DC motors for servo drives,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 986 – 996, Sept./Oct. 1991.
[4]D. E. Cameron, J. H. Lang, and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1250 – 1255, Nov./Dec. 1992.
[5]G. S. Buja and M. I. Valla, “Control characteristics of the SRM drives. I. Operation in the linear region,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 313 – 321, Oct. 1991.
[6]G. S. Buja and M. I. Valla, “Control characteristics of the SRM drives. II. Operation in the saturated region,” IEEE Trans. Ind. Electron., vol. 41, no. 3, pp. 316 – 325, June 1994.
[7]R. Krishnan, R. Arumugan, and J.F. Lindsay, “Design procedure for switched-reluctance motors,” IEEE Trans. Ind. Appl., vol. 24, no. 3, pp. 456 – 461, May/June 1988.
[8]M. N. Anwar, I. Husain, and A. V. Radun, “A comprehensive design methodology for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 37, no. 6 pp. 1684 – 1692, Nov./Dec. 2001.
[9]A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5 pp. 1079 – 1087, Sept./Oct. 1995.
[10] N. K. Sheth and K. R. Rajagopal, “Optimum pole arcs for a switched reluctance motor for higher torque with reduced ripple,” IEEE Trans. Magn., vol. 39, no. 5, pp. 3214 – 3216, Sept. 2003.
[11] B. C. Mecrow, “New winding configurations for doubly salient reluctance machines,” IEEE Trans. Ind. Appl., vol. 32, no. 6 pp. 1348 – 1356, Nov./Dec. 1996.
[12] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 714 – 722, May/June 2000.
[13] K. Koibuchi, T. Ohno, and K. Sawa, “A basic study for optimal design of switched reluctance motor by finite element method,” IEEE Trans. Magn., vol. 33, no. 2, pp. 2077 – 2080, Mar. 1997.
[14] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100 – 1111, Nov. 1998.
[15] R. Krishnan and P. N. Materu, “Design of a single-switch-per-phase converter for switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 37, no. 6, pp. 469 – 476, Dec. 1990.
[16] C. Pollock and B. W. Williams, “A unipolar converter for a switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 26, no. 2, pp. 222 – 228, Mar./Apr. 1990.
[17] M. Ehsani, I. Husain, K. R. Ramani, and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 224 – 230, Apr. 1993.
[18] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched-reluctance motor by DC link voltage boosting,” IEE Proc.-Electr. Power Appl., vol. 140, no. 5, pp. 316 – 322, Sept. 1993.
[19] G. S. Buja, R. Menis, and M. I. Valla, “Variable structure control of an SRM drive,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 56 – 63, Feb. 1993.
[20] S. Bolognani and M. Zigliotto, “Fuzzy logic control of a switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1063 – 1068, Sept./Oct. 1996.
[21] R. S. Wallace and D. G. Taylor, “A balanced commutator for switched reluctance motors to reduce torque ripple,” IEEE Trans. Power Electron., vol. 7, no. 4, pp. 617 – 626, Oct. 1992.
[22] N. Matsui, N. Akao, and T. Wakino, “High-precision torque control of reluctance motors,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 902 – 907, Sept./Oct. 1991.
[23] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearisation approach,” IEE Proc.-Electr. Power Appl., vol. 143, no. 5, pp. 371 – 379, Sept. 1996.
[24] A. Lumsdaine and J. H. Lang, “State observers for variable-reluctance motors,” IEEE Trans. Ind. Electron., vol. 37, no. 2, pp. 133 – 142, Apr. 1990.
[25] S. K. Panda and G. A. J. Amaratunga, “Waveform detection technique for indirect rotor-position sensing of switched-reluctance motor drives part 1: analysis,” IEE Proc.-Electr. Power Appl., vol. 140, no. 1, pp. 80 – 88, Jan. 1993.
[26] S. K. Panda and G. A. J. Amaratunga, “Waveform detection technique for indirect rotor-position sensing of switched-reluctance motor drives part 2: experimental results,” IEE Proc.-Electr. Power Appl., vol. 140, no. 1, pp. 89 – 96, Jan. 1993.
[27] I. Husain and M. Ehsani, “Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltages.” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 665 – 672, May/June 1994.
[28] T. Wakasa, Guo Hai-Jao, and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” IEEE IECON’02, vol. 1, no. 5-8, pp. 502 – 507, Nov. 2002.
[29] W. D. Harris and J. H. Lang, “A simple motion estimator for variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 26, no. 2, pp. 237 – 243, Mar./Apr. 1990.
[30] M. Ehsani, I. Husain, and A. B. Kulkarni, “Elimination of discrete position sensor and current sensor in switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 128 – 135, Jan./Feb. 1992.
[31] 許家豪, ”開關式磁阻電動機之無轉軸偵測元件驅動系統的研製,” 碩 士論文, 國立台灣科技大學電機工程研究所, 2003年六月.
[32] T. J. E. Miller, Switched Reluctance Motors and Their Control, New York: Oxford, 1993.
[33] R. M. Davis, “Variable reluctance rotor structures-their influence on torque production,” IEEE Trans. Ind. Electron., vol. 39, no. 2, pp. 168 – 174, Apr. 1992.
[34] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable-reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017 – 1022, Sept./Oct. 1992.
[35] C. Pollock and B. W. Williams, “Power convertor circuits for switched reluctance motors with the minimum number of switches,” IEE Proc.-Electr. Power Appl., vol. 137, no. 6, pp. 373 – 384, Nov. 1990.
[36] S. Mir, I. Husain, and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912 – 921, Sept. 1997.
[37] J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control, and Information, New Jersey: Prentice-Hall, 1999.
[38] L. X. Wang, A Course in Fuzzy System and Control, New Jersey: Prentice-Hall, 1997.
[39] R. S. Chokhawala and S. Sobhani, “Switching voltage transient protection schemes for high-current IGBT modules,” IEEE Trans. Ind. Appl., vol. 33, no. 6, pp. 1601 – 1610, Nov./Dec. 1997.

QR CODE