簡易檢索 / 詳目顯示

研究生: 蘇子寧
Tzu-Ning Su
論文名稱: 環氧樹脂添加聚矽氮烷發泡結構與性能相關性之研究
The Relationship between Foam Structure and Performance of Epoxy/Polysilazane Systems
指導教授: 邱智瑋
Chih-Wei Chiu
邱顯堂
Hsien-Tang Chiu
口試委員: 游進陽
Chin-Yang Yu
吳昌謀
Chang-Mou Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 112
中文關鍵詞: 環氧樹脂聚矽氮烷發泡行為
外文關鍵詞: Epoxy, Polysilazane, foaming reaction
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在探討雙酚A 型環氧樹脂與有機聚矽氮烷混摻後,環氧
樹脂之交聯反應與添加聚矽氮烷之發泡反應,兩者相互競爭下發泡材
之物性研究,找出最適化加工條件與發泡結構性能之相關性。環氧樹
脂與硬化劑設定比例為2:1.5,第一部分依聚矽氮烷添加量之不同設
計配方攪拌後放入模具進行發泡,研究中採用DSC、FTIR 進行基材
之分析,決定加工之溫度、時間及交聯反應式;以GC-mass 測定產
生氣體種類;以HIDEN 驗證產氣行為之速率;使用流變儀模擬發泡
過程環氧樹脂交聯反應的黏度變化,使用OM 觀測發泡之孔洞型態;
對發泡後之樣品測試密度、抗壓強度、壓縮永久變形、硬度、耐候性
等性質。實驗結果發現聚矽氮烷添加量與發泡倍率成正比,與物性成
反比。
第二部份利用加工參數的調整,以最少添加量之聚矽氮烷獲取最
大發泡量,降低環氧樹脂交聯速率以延長產氣量效果不彰,是由於環
氧樹脂在各溫度交聯下黏度性質差異不大,而產氣量固定,故發泡效
果無顯著差異性。另在相同聚矽氮烷添加量下改變攪拌時間,增加環
氧樹脂與聚矽氮烷反應之碰撞機會,得產氣量增加,故攪拌時間與發
泡效率成正比。


The purpose of this study was to investigate the cross-linking
reaction and the foaming reaction between Bisphenol A epoxy resin,
amine hardener and polysilazane. Research found out the correlation
between the processing conditions and the physical properties of epoxy
foam. The ratio of epoxy resin to amine hardener is 2:1.5.
The first part investigated the correlation by adding different amount
of polysilazane. According to DSC and FTIR, determined the cross
linking reaction rate and processing temperature; GC-mass determined
the gas species; HIDEN verified the gas processing rate. We used
Rheometer to simulate foaming process, used OM to observe foaming
pore type. We test compression set, hardness, weather resistance for
physical properties. The experimental results show that more polysilazane
we add, higher foamability we got, but lower physical property we had.
We changed foaming process in the second part, decided to obtain the
maximum foamability with the minimum amount of polysilazane. It was
not influence on the foamability by lower the cross-linking rate. Because
the viscosity of epoxy was alike in different temperature, gas production
was fixed, so there was no significant difference in foaming effect.
When the stirring time was changed in the same amount of
polysilazane. Longer time we stirred, higher foamability we got. It was
because when the stirring time increased, the collision ratio between
epoxy and polysilazane was increased, and also increased the gas
production. So the stirring time is proportional to the foaming efficiency.

摘要................................................................................................................................. I Abstract .......................................................................................................................... II 誌謝............................................................................................................................... III 圖目錄...........................................................................................................................VI 表目錄.........................................................................................................................VIII 第1 章 緒論............................................................................................................ 1 1.1 研究背景與動機........................................................................................ 1 1.2 研究目的.................................................................................................... 4 第2 章 文獻回顧.................................................................................................... 5 2.1 環氧樹脂簡介............................................................................................ 5 2.1.1 環氧樹脂之結構............................................................................ 6 2.1.2 環氧樹脂之合成及製造................................................................ 8 2.2 硬化劑...................................................................................................... 10 2.2.1 功能與分類.................................................................................. 10 2.2.2 胺類硬化機制.............................................................................. 13 2.2.3 胺類硬化劑特性.......................................................................... 19 2.3 聚矽氮烷.................................................................................................. 20 2.3.1 聚矽氮烷簡介.............................................................................. 20 2.3.2 合成及製造.................................................................................. 22 2.3.3 功能與應用.................................................................................. 26 2.4 塑料發泡.................................................................................................. 27 2.4.1 塑料發泡簡介.............................................................................. 27 2.4.2 發泡劑種類.................................................................................. 29 2.4.3 發泡反應...................................................................................... 32 2.4.4 均質成核與異質成核.................................................................. 37 第3 章 實驗.......................................................................................................... 41 3.1 實驗架構.................................................................................................. 41 3.2 實驗材料與配方...................................................................................... 42 3.2.1 實驗材料...................................................................................... 42 3.2.2 實驗配方...................................................................................... 43 3.3 測試與分析.............................................................................................. 44 3.3.1 樣品製備...................................................................................... 44 3.3.2 熱示差分析Differential Scanning Calorimetry (DSC) .............. 45 3.3.3 傅立葉轉換紅外線光譜儀.......................................................... 45 3.3.4 熱重損失分析 Thermogravimetry Analysis(TGA) .................... 46 3.3.5 流變儀 Rheometer ...................................................................... 46 3.3.6 氣相層析質譜分析...................................................................... 47 3.3.7 線上氣體分析質譜儀.................................................................. 47 3.3.8 密度測定...................................................................................... 48 3.3.9 發泡倍率...................................................................................... 48 3.3.10 發泡孔徑分析.............................................................................. 48 3.3.11 硬度(Hardness) ............................................................................ 48 3.3.12 耐候性測試.................................................................................. 49 3.3.13 熱傳導試驗.................................................................................. 49 3.3.14 抗壓強度試驗.............................................................................. 50 3.3.15 壓縮永久變形率(Compression Set) ............................................ 50 第4 章 結果與討論.............................................................................................. 51 4.1 熱性質分析.............................................................................................. 51 4.1.1 示差掃描量熱儀.......................................................................... 51 4.1.2 熱重損失分析儀.......................................................................... 56 4.2 化學性質分析.......................................................................................... 59 4.2.1 傅立葉轉換紅外線光譜儀.......................................................... 59 4.2.2 氣相層析質譜儀.......................................................................... 65 4.2.3 線上氣體分析質譜儀.................................................................. 68 4.3 物理性質分析.......................................................................................... 69 4.3.1 試片密度...................................................................................... 69 4.3.2 型態觀察...................................................................................... 72 4.3.3 流變儀(Rheometer) ..................................................................... 80 4.3.4 硬度試驗...................................................................................... 82 4.3.5 熱傳導試驗.................................................................................. 85 4.3.6 抗壓強度試驗.............................................................................. 87 4.3.7 壓縮永久變形率.......................................................................... 89 4.4 耐候性試驗.............................................................................................. 91 4.4.1 硬度試驗...................................................................................... 92 4.4.2 抗壓強度試驗.............................................................................. 95 第5 章 結論.......................................................................................................... 97 第6 章 參考文獻.................................................................................................. 98

[1] S.-T. Lee, C.B. Park, N.S. Ramesh, Polymeric foams: science and technology,
CRC press2006.
[2] C.E. Carraher Jr, Seymour/Carraher's polymer chemistry, CRC Press2003.
[3] M. Rodríguez-Pérez, Crosslinked polyolefin foams: production, structure,
properties, and applications, Crosslinking in materials science, Springer2005, pp.
97-126.
[4] D.F. Baldwin, D. Tate, C.B. Park, S.W. Cha, N. Suh, Microcellular plastics
processing technology (1), Journal of Japan Society of Polymer Processing 6 (1994)
245-256.
[5] K.W. Suh, C.P. Park, M.J. Maurer, M.H. Tusim, R.D. Genova, R. Broos, D.P.
Sophiea, Lightweight cellular plastics, Advanced Materials 12(23) (2000) 1779-1789.
[6] G. Li, Thermodynamic investigation of the solubility of physical blowing agents
in polymer melts, ProQuest2007.
[7] S.N.S. Leung, Mechanisms of cell nucleation, growth, and coarsening in plastic
foaming: theory, simulation, and experiment, 2009.
[8] A. Lukacs III, G.J. Knasiak, Thermally stable, moisture curable polysilazanes and
polysiloxazanes,Patents US6652978B2, 2003.
[9] H. Kimura, A. Matsumoto, K. Hasegawa, K. Ohtsuka, A. Fukuda, Epoxy resin
cured by bisphenol A based benzoxazine, Journal of Applied Polymer Science 68(12)
(1998) 1903-1910.
[10] W.J. Schultz, G.B. Portelli, J.P. Tane, Epoxy resin curing agent, process, and
composition,Patents US4503211A, 1987.
[11] 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 1999.
[12] B. Francis, V.L. Rao, G.V. Poel, F. Posada, G. Groeninckx, R. Ramaswamy, S.
Thomas, Cure kinetics, morphological and dynamic mechanical analysis of diglycidyl
ether of bisphenol-A epoxy resin modified with hydroxyl terminated poly (ether ether
ketone) containing pendent tertiary butyl groups, Polymer 47(15) (2006) 5411-5419.
[13] 陳平, 王德中, 環氧樹脂及其應用, 北京: 化學工業出版社, 2004.
[14] K. Huang, Z. Liu, J. Zhang, S. Li, M. Li, J. Xia, Y. Zhou, A self-crosslinking
thermosetting monomer with both epoxy and anhydride groups derived from tung oil
fatty acids: Synthesis and properties, European Polymer Journal 70 (2015) 45-54.
[15] S. Agius, M. Joosten, B. Trippit, C. Wang, T. Hilditch, Rapidly cured
epoxy/anhydride composites: Effect of residual stress on laminate shear strength,
Composites Part A: Applied Science and Manufacturing 90 (2016) 125-136.
[16] S. Kugler, K. Kowalczyk, T. Spychaj, Influence of synthetic and bio-based amine
curing agents on properties of solventless epoxy varnishes and coatings with carbon
nanofillers, Progress in Organic Coatings 109 (2017) 83-91.
[17] S. Kumar, S.K. Samal, S. Mohanty, S.K. Nayak, Study of curing kinetics of
anhydride cured petroleum-based (DGEBA) epoxy resin and renewable resource
based epoxidized soybean oil (ESO) systems catalyzed by 2-methylimidazole,
Thermochimica Acta 654 (2017) 112-120.
[18] T. Yang, C. Zhang, J. Zhang, J. Cheng, The influence of tertiary amine
accelerators on the curing behaviors of epoxy/anhydride systems, Thermochimica acta
577 (2014) 11-16.
[19] F. Bauer, U. Decker, A. Dierdorf, H. Ernst, R. Heller, H. Liebe, R. Mehnert,
Preparation of moisture curable polysilazane coatings: Part I. Elucidation of low
temperature curing kinetics by FT-IR spectroscopy, Progress in organic coatings 53(3)
(2005) 183-190.
[20] Y. Chen, X. Yang, Y. Cao, Z. Gan, L. An, Quantitative study on structural
evolutions and associated energetics in polysilazane-derived amorphous silicon
carbonitride ceramics, Acta Materialia 72 (2014) 22-31.
[21] M. Shayed, C. Cherif, R. Hund, T. Cheng, F. Osterod, Carbon and glass fibers
modified by polysilazane based thermal resistant coating, Textile research journal
80(11) (2010) 1118-1128.
[22] R.G. Jones, W. Ando, J. Chojnowski, Silicon-containing polymers: the science
and technology of their synthesis and applications, Springer Science & Business
Media2013.
[23] G. Gregori, H.-J. Kleebe, H. Brequel, S. Enzo, G. Ziegler, Microstructure
evolution of precursors-derived SiCN ceramics upon thermal treatment between 1000
and 1400 C, Journal of non-crystalline solids 351(16-17) (2005) 1393-1402.
[24] C.R. Krüger, E.G. Rochow, Polyorganosilazanes, Journal of Polymer Science
Part A: General Papers 2(7) (1964) 3179-3189.
[25] K. Ruhlandt‐Senge, R.A. Bartlett, M.M. Olmstead, P.P. Power, Silylamines with
pyramidal coordination at nitrogen, Angewandte Chemie International Edition in
English 32(3) (1993) 425-427.
[26] T. Moeller, Inorganic syntheses, John Wiley & Sons2009.
[27] E. Kroke, Y.-L. Li, C. Konetschny, E. Lecomte, C. Fasel, R. Riedel, Silazane
derived ceramics and related materials, Materials Science and Engineering: R:
Reports 26(4-6) (2000) 97-199.
[28] M. Shayed, R. Hund, C. Cherif, Polysilazane‐based heat‐and oxidation‐resistant
coatings on carbon fibers, Journal of Applied Polymer Science 124(3) (2012)
2022-2029.
[29] M.Y.S.E.-S. Ahmed, Design and Manufacturing of Novel Microcellular
Acoustical Foams, ProQuest2008.
[30] K.C. Frisch, D. Klempner, Handbook of polymeric foams and foam technology,
Hanser1991.
[31] O. Secretariat, The Montreal protocol on substances that deplete the ozone layer,
United Nations Environment Programme, Nairobi, Kenya (2000).
[32] G. Hayman, M. Jenkin, T. Murrells, C. Johnson, Trospospheric degradation
chemistry of HCFC-123 (CF3CHCl2): A proposed replacement chlorofluorocarbon,
Atmospheric Environment 28(3) (1994) 421-437.
[33] D.F. Baldwin, C.B. Park, N.P. Suh, An extrusion system for the processing of
microcellular polymer sheets: Shaping and cell growth control, Polymer Engineering
& Science 36(10) (1996) 1425-1435.
[34] S.-T. Lee, C.B. Park, Foam extrusion: principles and practice, CRC press2014.
[35] C.B. Park, A.H. Behravesh, R.D. Venter, Low density microcellular foam
processing in extrusion using CO2, Polymer Engineering & Science 38(11) (1998)
1812-1823.
[36] D. Pierick, R. Janisch, Molding Technology: Introduction, Applications and
Advantages, Foaming Conference, RAPRA, Frankfurt, Germany, 2001.
[37] J.K. Fink, A concise introduction to additives for thermoplastic polymers, John
Wiley & Sons2010.
[38] V. LaMer, Kinetics in phase transitions, Ind. Eng. Chem 44 (1952) 1270-1277.
[39] M. Shafi, K. Joshi, R. Flumerfelt, Bubble size distributions in freely expanded
polymer foams, Chemical Engineering Science 52(4) (1997) 635-644.
[40] K. Joshi, J.G. Lee, M.A. Shafi, R.W. Flumerfelt, Prediction of cellular structure
in free expansion of viscoelastic media, Journal of applied polymer science 67(8)
(1998) 1353-1368.
[41] N. Ramesh, N. Malwitz, A non-isothermal model to study the influence of
blowing agent concentration on polymer viscosity and gas diffusivity in thermoplastic
foam extrusion, Journal of cellular plastics 35(3) (1999) 199-209.
[42] S.T. Lee, N.S. Ramesh, Gas loss during foam sheet formation, Advances in
Polymer Technology 15(4) (1996) 297-305.
[43] K. Taki, T. Nakayama, T. Yatsuzuka, M. Ohshima, Visual observations of batch
and continuous foaming processes, Journal of Cellular Plastics 39(2) (2003) 155-169.
[44] Q. Guo, J. Wang, C.B. Park, M. Ohshima, A microcellular foaming simulation
system with a high pressure-drop rate, Industrial & engineering chemistry research
45(18) (2006) 6153-6161.
[45] S.N. Leung, C.B. Park, D. Xu, H. Li, R.G. Fenton, Computer simulation of
bubble-growth phenomena in foaming, Industrial & engineering chemistry research
45(23) (2006) 7823-7831.
[46] J.W. Gibbs, The collected works of J. Willard Gibbs, Yale Univ. Press, 1948.
[47] J.H. Han, C. Dae Han, Bubble nucleation in polymeric liquids. II. Theoretical
considerations, Journal of Polymer Science Part B: Polymer Physics 28(5) (1990)
743-761.
[48] N. Ramesh, D.H. Rasmussen, G.A. Campbell, The heterogeneous nucleation of
microcellular foams assisted by the survival of microvoids in polymers containing
low glass transition particles. Part I: Mathematical modeling and numerical simulation,
Polymer Engineering & Science 34(22) (1994) 1685-1697.
[49] J. Colton, N. Suh, The nucleation of microcellular thermoplastic foam with
additives: Part II: Experimental results and discussion, Polymer Engineering &
Science 27(7) (1987) 493-499.
[50] J.G. Lee, R.W. Flumerfelt, A refined approach to bubble nucleation and polymer
foaming process: dissolved gas and cluster size effects, Journal of colloid and
Interface Science 184(2) (1996) 335-348.
[51] A. Apicella, Effect of chemorheology on epoxy resin properties, Developments in
Reinforced Plastics—5, Springer1986, pp. 151-180.
[52] J. Lee, F. Jin, S. Park, J. Park, Study of new fluorine-containing epoxy resin for
low dielectric constant, Surface and Coatings Technology 180 (2004) 650-654.
[53] Q. Zhang, D. Jia, Z. Yang, X. Duan, Q. Chen, Y. Zhou, Synthesis of Novel
Cobalt-Containing Polysilazane Nanofibers with Fluorescence by Electrospinning,
Polymers 8(10) (2016) 350.

無法下載圖示 全文公開日期 2024/07/26 (校內網路)
全文公開日期 2024/07/26 (校外網路)
全文公開日期 2024/07/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE