簡易檢索 / 詳目顯示

研究生: GURUMAYUM ROBERT KENEDY
GURUMAYUM ROBERT KENEDY
論文名稱: The study of phase transformations in Cr40Co20Fe20Ni20 and Cr39Co18Fe18Ni18Al7 high-entropy alloys
The study of phase transformations in Cr40Co20Fe20Ni20 and Cr39Co18Fe18Ni18Al7 high-entropy alloys
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
陳士勛
Shih-Hsun Chen
任盛源
Shien-Uang Jen
陳貞光
J.K.Chen
莊水旺
Shuei-Wan Juang
鄭偉鈞
Wei-Chun Cheng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 150
中文關鍵詞: 高熵合金旋節分解有序化反應
外文關鍵詞: High-entropy alloy, Spinodal decomposition, Ordering reaction
相關次數: 點閱:200下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文研究了兩種高熵合金,成分個別為Cr40Co20Fe20Ni20和Cr39Co18Fe18Ni18Al7,觀察這兩種合金的顯微組織、組成相及其相變化。合金均會在 1300°C 至 500°C 的各種溫度下進行熱處理,然後進行水淬或空冷。四元合金 Cr40Co20Fe20Ni20 在 1300°C 和 1200°C 持溫一段時間後水淬至室溫會由 BCC 和 FCC 相組成,而在相同溫度持溫後空冷至室溫的試片會由 BCC、FCC和相組成。在 1100 °C持溫一段時間後水淬和空冷至室溫的試片,均會出現相,並持續到 500 °C。
合金Cr39Co18Fe18Ni18Al7在1300 to 1100℃之間由BCC1、BCC2和FCC三相組成。 在 1000 °C 時,相為出現在合金中的第四相。在冷卻過程中,已發現 BCC 基地中會依次發生旋節分解和有序化反應。高溫 BCC 相通過旋節分解分解為兩個低溫 BCC 相(標記為 BCC1 和 BCC2)。 BCC2 相隨後通過有序化反應轉變為 B2 相。
此外,在肥粒體基地中B2顆粒之間出現奈米級B2顆粒,這也是冷卻過程中在低溫發生旋節分解和有序化反應的結果。


The constituent phases and their corresponding phase transformations of a study the microstructure and phase transformation of two HEA compositions Cr40Co20Fe20Ni20 and as the base alloy for preliminary study, another with the addition of Al to the base alloy with the nominal composition of Cr39Co18Fe18Ni18Al7. The alloy specimens were heat-treated at various temperatures ranging from 1300 °C to 500 °C, followed by either water quenching or air cooling. The quaternary alloy, Cr40Co20Fe20Ni20 water quenched samples at 1300 °C and 1200 °C consists of BCC and FCC phase whereas air-cooled sample for the same temperature consists of BCC, FCC and phase. At 1100 °C both the water and air-cooled samples start exhibiting phase and it persist till 500 °C.
The alloy Cr39Co18Fe18Ni18Al7 is composed of triple phases of BCC1, BCC2 and FCC between 1300 °C and 1100 °C. Upon cooling the HEA, the spinodal decomposition and ordering reaction, sequentially, in the BCC matrix has been discovered. The high-temperature BCC phase decomposes into two low-temperature BCC phases (marked as BCC1 and BCC2) through spinodal decomposition. The BCC2 phase undergoes the ordering reaction later and transforms to the B2 phase. phase appears as the fourth phase in the HEA at 1000 °C.

Additionally, the appearance of nanoscale B2 particles between the B2 particles in the ferrite matrix is also the result of spinodal decomposition and ordering reaction during cooling at lower temperatures.

Table of contents CHAPTER 1 1 INTRODUCTION 1 1.1 Brief History 1 1.3 Thesis structure 3 CHAPTER 2 5 2.1 HIGH ENTROPY ALLOYS & LITERATURE REVIEW 5 2.1.1 Brief Introduction 5 2.1.2 Definition of high entropy alloys 6 2.1.3 HEA Core Effects 6 2.1.4 Literature review 9 2.2 PHASE TRANSFORMATIONS THEORY 14 2.2.1 Spinodal Decomposition 14 2.2.2 Spinodal Decomposition and Free Energy Diagram 15 2.2.3 Ordering reaction 16 2.2.4 Precipitation Transformation 18 CHAPTER 3 24 EXPERIMENTAL METHODS 24 3.1 Introduction 24 3.2 Alloy Casting 24 3.3 Ingot Processing 25 3.4 Heat Treatment 26 3.5 XRD and Microhardness Sample Preparation 26 3.6 Metallography Sample Preparation 27 3.7 Metallography Sample Requisites 28 3.8 Steps involved in metallography sample preparation 28 3.9 TEM Sample Preparation 30 3.10 Precision Ion Polishing System (PIPS) 30 3.11 Focused ion beam 31 3.12 Characterization Techniques and Tools 31 3.13 Mechanical Testing – Hardness Test 31 3.14 Light Optical Microscopy 33 3.15 Scanning Electron Microscopy (SEM) 33 3.16 Transmission Electron Microscopy 36 3.17 Principle of Contrast Generation in an Electron Microscope 37 3.18 TEM Imaging 37 3.19 Diffraction Pattern (DP) 38 3.22 Scanning Transmission Electron Microscope (STEM) 42 CHAPTER 4 58 RESULTS AND DISCUSSION 58 4.1 Quarternary HEAs………………………………………………………………..57 4.1.1 Solution treatment at 1300 °C for 30 mins and water quenched (A-1300WQ) 58 4.1.2 Solution treatment at 1300 °C for 30 mins and air cooling (A-1300AC) 59 4.1.3 Solution Treatment at 1200 °C for 30 mins and water quenched (A-1200WQ) 60 4.1.4 Solution Treatment at 1300 °C for 30 mins and water quenched (A1300-AC) 60 4.1.5 Solution Treatment at 1100°C for 1 hour and then either water quenched or air cooling (A-1100WQ And A-1100AC) 61 4.1.6 Solution Treatment at 1050 °C for 1 hour and aging at various temperatures below 1050 °C for 100 hours and water quenched 61 4.2 Quinary HEAs………………………………………………………………….....62 4.2.1 Solution treatment at 1300 °C for 30 mins and water quenched (B-1300WQ) 62 4.2.2 Spinodal Decomposition Observation 63 4.2.3 STEM Study 66 4.2.4 Solution treatment at 1300 °C for 30 mins and air cooling (B-1300AC) 67 4.2.5 Solution treatment at 1200 °C for 30 mins and water quenched (B-1200WQ) 68 4.2.6 Solution treatment at 1200 °C for 30 mins and water quenched (B-1200AC) 69 4.2.7 Solution treatment at 1100 °C for 30 mins and water quenched (B1100-WQ) 70 4.2.8 Solution treatment at 1100 °C for 30 mins and water quenched (B1300-AC) 71 4.2.9 Solution treatment at 1050 °C for 1hour and water quenched followed by aging at various temperatures 72 4.2.10 Hardness study 72 CHAPTER 5 121 CONCLUSIONS 121 5.1 Quaternary HEA 121 5.2 Quinary HEA 121

1. Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials 2004, 6 (5), 299-303.

2. Greer, A. L., Confusion by design. Nature 1993, 366 (6453), 303-304.

3. Ma, L.; Wang, L.; Zhang, T.; Inoue, A., Bulk Glass Formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) Alloys. Materials Transactions 2002, 43 (2), 277-280.

4. Klement, W.; Willens, R. H.; Duwez, P. O. L., Non-crystalline Structure in Solidified Gold–Silicon Alloys. Nature 1960, 187 (4740), 869-870.

5. Johnson, W. L., Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bulletin 2013, 24 (10), 42-56.

6. Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B., Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A 2004, 375-377, 213-218.

7. Huang, P. K.; Yeh, J. W.; Shun, T. T.; Chen, S. K., Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Advanced Engineering Materials 2004, 6 (12), 74-78.

8. Yeh, J.W.; Lin, S.J.; Chin, T.S.; Gan, J.Y.; Chen, S.K.; Shun, T.T.; Tsau, C.H.; Chou, S.-Y., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A 2004, 35 (8), 2533-2536.

9. Ranganathan, S., Alloyed pleasures: Multimetallic cocktails. Current science 2003, 85 (10), 1404-1406.

10. Murty, B. S.; Yeh, J. W.; Ranganathan, S., High Entropy Alloys. Butterworth-Heinemann: 2014.

11. Miracle, D. B.; Senkov, O. N., A critical review of high entropy alloys and related concepts. Acta Materialia 2017, 122, 448-511.

12. Schuh, B.; Mendez-Martin, F.; Völker, B.; George, E. P.; Clemens, H.; Pippan, R.; Hohenwarter, A., Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Materialia 2015, 96, 258-268.
13. Wu, Z.; Bei, H., Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy. Materials Science and Engineering: A 2015, 640, 217-224.

14. Daoud, H. M.; Manzoni, A. M.; Völkl, R.; Wanderka, N.; Glatzel, U., Oxidation Behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17Compositionally Complex Alloys (High-Entropy Alloys) at Elevated Temperatures in Air. Advanced Engineering Materials 2015, 17 (8), 1134-1141.

15. Qiu, Y.; Hu, Y. J.; Taylor, A.; Styles, M. J.; Marceau, R. K. W.; Ceguerra, A. V.; Gibson, M. A.; Liu, Z. K.; Fraser, H. L.; Birbilis, N., A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Materialia 2017, 123, 115-124.

16. Miracle, D.; Miller, J.; Senkov, O.; Woodward, C.; Uchic, M.; Tiley, J., Exploration and Development of High Entropy Alloys for Structural Applications. Entropy 2014, 16 (1), 494-525.

17. Zhao, S.; Stocks, G. M.; Zhang, Y., Stacking fault energies of face-centered cubic concentrated solid solution alloys. Acta Materialia 2017, 134, 334-345.

18. Zhang, Y.; Stocks, G. M.; Jin, K.; Lu, C.; Bei, H.; Sales, B. C.; Wang, L.; Beland, L. K.; Stoller, R. E.; Samolyuk, G. D.; Caro, M.; Caro, A.; Weber, W. J., Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Commun 2015, 6, 8736.

19. Zhang, C.; Zhang, F.; Jin, K.; Bei, H.; Chen, S.; Cao, W.; Zhu, J.; Lv, D., Understanding of the Elemental Diffusion Behavior in Concentrated Solid Solution Alloys. Journal of Phase Equilibria and Diffusion 2017, 38 (4), 434-444.

20. Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P., Microstructures and properties of high-entropy alloys. Progress in Materials Science 2014, 61, 1-93.

21. Zhang, Y., High-Entropy Materials: A Brief Introduction. 2019.

22. Tsai, M.-H.; Yeh, J.-W., High-Entropy Alloys: A Critical Review. Materials Research Letters 2014, 2 (3), 107-123.

23. Ye, Y. F.; Wang, Q.; Lu, J.; Liu, C. T.; Yang, Y., High-entropy alloy: challenges and prospects. Materials Today 2016, 19 (6), 349-362.

24. Zhang, Z.; Mao, M. M.; Wang, J.; Gludovatz, B.; Zhang, Z.; Mao, S. X.; George, E. P.; Yu, Q.; Ritchie, R. O., Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun 2015, 6, 10143.

25. Gali, A.; George, E. P., Tensile properties of high- and medium-entropy alloys. Intermetallics 2013, 39, 74-78.

26. Yang, T.; Zhao, Y. L.; Tong, Y.; Jiao, Z. B.; Wei, J.; Cai, J. X.; Han, X. D.; Chen, D.; Hu, A.; Kai, J. J.; Lu, K.; Liu, Y.; Liu, C. T., Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 2018, 362 (6417), 933-937.

27. Huang, H.; Wu, Y.; He, J.; Wang, H.; Liu, X.; An, K.; Wu, W.; Lu, Z., Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering. Adv Mater 2017, 29 (30).

28. Senkov, O. N.; Scott, J. M.; Senkova, S. V.; Miracle, D. B.; Woodward, C. F., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds 2011, 509 (20), 6043-6048.

29. Senkov, O. N.; Wilks, G. B.; Miracle, D. B.; Chuang, C. P.; Liaw, P. K., Refractory high-entropy alloys. Intermetallics 2010, 18 (9), 1758-1765.

30. Feuerbacher, M.; Heidelmann, M.; Thomas, C., Hexagonal High-entropy Alloys. Materials Research Letters 2014, 3 (1), 1-6.

31. Wang, X. F.; Zhang, Y.; Qiao, Y.; Chen, G. L., Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 2007, 15 (3), 357-362.

32. Shun, T.T.; Chang, L.Y.; Shiu, M.-H., Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Materials Science and Engineering: A 2012, 556, 170-174.

33. Li, Z.; Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C., Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534 (7606), 227-30.

34. Li, Z.; Raabe, D., Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties. JOM (1989) 2017, 69 (11), 2099-2106.

35. Senkov, O. N.; Wilks, G. B.; Scott, J. M.; Miracle, D. B., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19 (5), 698-706.

36. Xia, S. Q.; Yang, X.; Yang, T. F.; Liu, S.; Zhang, Y., Irradiation Resistance in Al x CoCrFeNi High Entropy Alloys. Jom 2015, 67 (10), 2340-2344.

37. Chuang, M.-H.; Tsai, M.-H.; Wang, W.-R.; Lin, S.-J.; Yeh, J.-W., Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia 2011, 59 (16), 6308-6317.
38. Hemphill, M. A.; Yuan, T.; Wang, G. Y.; Yeh, J. W.; Tsai, C. W.; Chuang, A.; Liaw, P. K., Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Materialia 2012, 60 (16), 5723-5734.

39. Shi, Y.; Yang, B.; Xie, X.; Brechtl, J.; Dahmen, K. A.; Liaw, P. K., Corrosion of Al CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corrosion Science 2017, 119, 33-45.

40. Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O., A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345 (6201), 1153-8.

41. Jo, Y. H.; Jung, S.; Choi, W. M.; Sohn, S. S.; Kim, H. S.; Lee, B. J.; Kim, N. J.; Lee, S., Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun 2017, 8, 15719.

42. Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E. P., The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia 2013, 61 (15), 5743-5755.

43. Praveen, S.; Kim, H. S., High-Entropy Alloys: Potential Candidates for High-Temperature Applications - An Overview. Advanced Engineering Materials 2018, 20 (1).

44. Chang, X.; Zeng, M.; Liu, K.; Fu, L., Phase Engineering of High-Entropy Alloys. Adv Mater 2020, 32 (14), e1907226.

45. Li, L.; Lu, J.; Liu, X.; Dong, T.; Zhao, X.; Yang, F.; Guo, F., Al CoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25% NaCl at 900 °C. Corrosion Science 2021, 187.

46. Wang, Y. P.; Li, B. S.; Ren, M. X.; Yang, C.; Fu, H. Z., Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A 2008, 491 (1-2), 154-158.

47. Xia, S. Q.; Gao, M. C.; Zhang, Y., Abnormal temperature dependence of impact toughness in Al CoCrFeNi system high entropy alloys. Materials Chemistry and Physics 2018, 210, 213-221.

48. Wani, I. S.; Bhattacharjee, T.; Sheikh, S.; Lu, Y. P.; Chatterjee, S.; Bhattacharjee, P. P.; Guo, S.; Tsuji, N., Ultrafine-Grained AlCoCrFeNi2.1Eutectic High-Entropy Alloy. Materials Research Letters 2016, 4 (3), 174-179.

49. Wang, W.R.; Wang, W.L.; Yeh, J.W., Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. Journal of Alloys and Compounds 2014, 589, 143-152.
50. Gwalani, B.; Soni, V.; Choudhuri, D.; Lee, M.; Hwang, J. Y.; Nam, S. J.; Ryu, H.; Hong, S. H.; Banerjee, R., Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2. Scripta Materialia 2016, 123, 130-134.

51. Munitz, A.; Salhov, S.; Hayun, S.; Frage, N., Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. Journal of Alloys and Compounds 2016, 683, 221-230.

52. Wang, W.-R.; Wang, W.L.; Wang, S.-C.; Tsai, Y.C.; Lai, C.-H.; Yeh, J.W., Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 2012, 26, 44-51.

53. Tong, C.J.; Chen, Y.L.; Yeh, J.W.; Lin, S.J.; Chen, S.K.; Shun, T.T.; Tsau, C.H.; Chang, S.Y., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A 2005, 36 (4), 881-893.

54. Kao, Y.F.; Chen, T.J.; Chen, S.K.; Yeh, J.W., Microstructure and mechanical property of as-cast, homogenized, and deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys. Journal of Alloys and Compounds 2009, 488 (1), 57-64.

55. Rao, J. C.; Diao, H. Y.; Ocelík, V.; Vainchtein, D.; Zhang, C.; Kuo, C.; Tang, Z.; Guo, W.; Poplawsky, J. D.; Zhou, Y.; Liaw, P. K.; De Hosson, J. T. M., Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Materialia 2017, 131, 206-220.

56. Li, C.; Li, J. C.; Zhao, M.; Jiang, Q., Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. Journal of Alloys and Compounds 2010, 504, S515-S518.

57. Yang, T.; Xia, S.; Liu, S.; Wang, C.; Liu, S.; Zhang, Y.; Xue, J.; Yan, S.; Wang, Y., Effects of AL addition on microstructure and mechanical properties of Al CoCrFeNi High-entropy alloy. Materials Science and Engineering: A 2015, 648, 15-22.

58. Tsai, M.H.; Tsai, K.Y.; Tsai, C.W.; Lee, C.; Juan, C.C.; Yeh, J.W., Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys. Materials Research Letters 2013, 1 (4), 207-212.

59. Chaudhary, V.; Gwalani, B.; Soni, V.; Ramanujan, R. V.; Banerjee, R., Influence of Cr Substitution and Temperature on Hierarchical Phase Decomposition in the AlCoFeNi High Entropy Alloy. Sci Rep 2018, 8 (1), 15578.

60. Santodonato, L. J.; Zhang, Y.; Feygenson, M.; Parish, C. M.; Gao, M. C.; Weber, R. J.; Neuefeind, J. C.; Tang, Z.; Liaw, P. K., Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun 2015, 6, 5964.
61. Manzoni, A.; Daoud, H.; Volkl, R.; Glatzel, U.; Wanderka, N., Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 2013, 132, 212-5.

62. Laughlin, D. E.; Cahn, J. W., Spinodal decomposition in age hardening copper-titanium alloys. Acta Metallurgica 1975, 23 (3), 329-339.

63. Soffa, W. A.; Laughlin, D. E., High-strength age hardening copper–titanium alloys: redivivus. Progress in Materials Science 2004, 49 (3-4), 347-366.

64. Soffa, W. A.; Laughlin, D. E., Decomposition and ordering processes involving thermodynamically first-order order → disorder transformations. Acta Metallurgica 1989, 37 (11), 3019-3028.

65. Tadaki, T.; Shimizu, K.; Watanabe, T., Electron Microscopic Observation of the Austenite and the Martensite in High Aluminium Steel. Transactions of the Japan Institute of Metals 1971, 12 (6), 386-389.

66. Oshima, R.; Wayman, C. M., Fine structure in quenched Fe-Al-C steels. Metallurgical Transactions 1972, 3 (8), 2163-2169.

67. Han, K. H.; Yoon, J. C.; Choo, W. K., TEM evidence of modulated structure in Fe MnAlC austenitic alloys. Scripta Metallurgica 1986, 20 (1), 33-36.

68. Sato, K.; Tagawa, K.; Inoue, Y., Age hardening of an Fe-30Mn-9Al-0.9C alloy by spinodal decomposition. Scripta Metallurgica 1988, 22 (6), 899-902.

69. Sato, K.; Tagawa, K.; Inoue, Y., Spinodal decomposition and mechanical properties of an austenitic Fe-30wt.%Mn-9wt.%Al-0.9wt.%C alloy. Materials Science and Engineering: A 1989, 111, 45-50.

70. Sato, K.; Tagawa, K.; Inoue, Y., Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys. Metallurgical Transactions A 1990, 21 (1), 5-11.

71. Han, K. H., On the coarsening of the modulated structure during aging of austenitic FeMnAlC alloys prepared by the rapid solidification process. Materials Science and Engineering: A 1995, 197 (2), 223-229.

72. Choo, W. K.; Kim, J. H.; Yoon, J. C., Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties. Acta Materialia 1997, 45 (12), 4877-4885.

73. Li, M. C.; Chang, H.; Kao, P. W.; Gan, D., The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys. Materials Chemistry and Physics 1999, 59 (1), 96-99.

74. Wang, C. S.; Hwang, C. N.; Chao, C. G.; Liu, T. F., Phase transitions in an Fe–9Al–30Mn–2.0C alloy. Scripta Materialia 2007, 57 (9), 809-812.

75. Cheng, W.C.; Cheng, C.Y.; Hsu, C.W.; Laughlin, D. E., Phase transformation of the L1 2 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel. Materials Science and Engineering: A 2015, 642, 128-135.

76. Cahn, J. W., On spinodal decomposition. Acta Metallurgica 1961, 9 (9), 795-801.

77. Hilliard, J. E., Phase Transformations. American Society for Metals.

78. Porter, D. A., Easterling, K. E. & Sherif, M. Y., Phase Transformations in Metals and Alloys. CRC Press: 2021.

79. Mario, E., Metallography and Microstructures. ASM International: 2004.

80. Faraji, G., Kim, H. S. & Kashi, H. T., Severe Plastic Deformation In Chapter 7 - Mechanical Properties of Ultrafine-Grained and Nanostructured Metals [Online] Elsevier.

81. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants. In Technologies for chemical analyses, microstructural and inspection investigations [Online] Woodhead Publishing: 2017; pp. 197-245.

82. William, D. B. C., B. , Transmission Electron Microscopy. Springer.

83. Kumar, P. S., Pavithra, K. G. & Naushad, Mu., Characterization techniques for nanomaterials. in Nanomaterials for Solar Cell Applications Elsevier: 2019; pp. 97–124.

84. Egerton, R. F., Physical Principles of Electron Microscopy. Springer.

85. Krumeich, F. Properties of Electrons, their Interactions with Matter and Applications in Electron Microscopy.

86. ASTM, Standard E18-15 Standard Test Methods for Rockwell Hardness of Metallic Materials. ASTM International: 2003.
87. https://www.tekportal.net/scanning-electron-microscope/
88. https://myscope.training/

QR CODE