簡易檢索 / 詳目顯示

研究生: Richard Kyalo Kimilu
Richard - Kyalo Kimilu
論文名稱: 聲波激勵對橫風火焰的影響
An Experimental Study of Acoustically Excited Stack-Issued Jet Flames in Crossflow
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 牛仰堯
Yang-Yao Niu
閻順昌
Shun-Chang Yen
孫珍理
Chen-Li Sun
林顯群
Sheam-Chyun Lin
林怡均
Yi-Jiun Peter Lin
趙振綱
Ching-Kong Chao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 199
中文關鍵詞: 振盪噴流火焰聲波激擾火焰流場可視化s流動控制橫風噴流火焰
外文關鍵詞: pulsed jet flame, acoustically excited flame, flow visualization, flow control, crossflow flame
相關次數: 點閱:297下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
針對橫風中的噴流火焰,利用實驗方法研究噴流的擾動強度對噴流火焰行為、噴
流結構、溫度及燃燒生成物分佈的影響。本研究中,噴流雷諾數的實驗範圍為 1500 –
1550,橫風雷諾數的實驗範圍為1350 – 1420,噴流對應橫風動量比固定為0.192。噴流
的擾動是由聲波激擾形成,使用熱線風速儀偵測噴流的速度振盪特性。利用高速攝影
機擷取噴流火焰之瞬時與時間平均的火焰影像,呈現噴流火焰的火焰特徵行為。使用
雷射輔助質點軌跡法,觀察噴流火焰的瞬時流場。藉由高速質點影像速度儀,量測噴
流火焰的平均速度場。噴流火焰的溫度及燃焰生成物,分別使用熱電偶線及氣體分析
儀量測。火焰的特徵行為與偏折噴流在出口附近之剪流層渦漩結構有密切的關係,這
些結構則受到噴流的激擾頻率及擾動強度影響。本研究主要採用的聲波激擾頻率為60
Hz、215 Hz 及645 Hz。在激擾頻率為60 Hz 時,隨著擾動強度的變化,噴流火焰可畫
分出四個火焰特徵模態。噴流的擾動影響火焰迎風面剪流層與圓管尾流迴流區的行為,
使得噴流火焰行為改變。當噴流的擾動強度Ipul > 0.55 時,噴流火焰在混合及燃燒上有
明顯的改善,並降低燃燒污染物的生成。在激擾頻率為215 Hz 時,隨著擾動強度的變
化,噴流火焰可畫分六個火焰特徵模態。火焰特徵行為與剪流層的渦漩結構有密切的
關聯。在擾動強度介於0 < Ipul < 0.35,火焰受到剪切渦漩支配,而在擾動強度介於0.35
< Ipul < 2.28 之間,火焰受到泡芙狀偏折噴流支配。當噴流的擾動強度Ipul < 0.9 時,噴
流火焰在混合及燃燒上有明顯的改善,並且降低燃燒污染物的生成。在激擾頻率為
645 Hz 時,隨著擾動強度的變化,噴流火焰可畫分出三個火焰特徵模態。在擾動強度
介於0 < Ipul < 0.3 之間,火焰不受噴流擾動影響。在擾動強度介於0.35 < Ipul < 0.7 之間,火焰長度迅速縮短。在擾動強度介於Ipul > 0.7 時,火焰呈現變得非常不穩定的閃爍。
當噴流的擾動強度Ipul > 0.3 時,噴流火焰的溫度及燃燒污染物的生成有明顯地改善。
歸納整理研究的成果,針對低噴流對應橫風之動量衝量比的橫風噴流火焰,使用三種
聲波激擾頻率,在擾動強度介於0.30 < Ipul < 0.60 時,能夠改善燃燒及降低燃燒污染物。


ABSTRACT
The effects of jet pulsation intensity on the jet flame in crossflow were experimentally investigated in a wind tunnel. The flame behavior and characteristics, jet flow patterns and structure, temperature and combustion-induced pollutants profiles were investigated. The jet and crossflow Reynolds numbers were maintained within the range of 1500 – 1550 and 1350 – 1420, respectively. The jet-to-crossflow momentum ratio was fixed at 0.192. Jet pulsations were generated by acoustic excitation, and digitized using a hot-wire anemometer. Time-averaged and instantaneous flame images were used to delineate the flame behavior and characteristics. Instantaneous flow pattern images were obtained using the laser-light-assisted particle-tracking method. The instantaneous flame images were taken using high-speed cameras. A high-speed PIV system was used to measure the instantaneous jet flow/flame field characteristics. Temperature and concentrations of unburned HC, CO and NO were measured using a fine-wire thermocouple and gas analyzer, respectively. The flame behavior and characteristics were highly dependent on the variation of the near tube bent jet shear-layer vortical structures. These structures were influenced by both the jet excitation frequency and level of pulsation intensity. Investigations were done at three jet excitation frequencies namely
60, 215 and 645 Hz. Upon exciting the jet at 60 Hz, four flame characteristic modes were identified in the domain of jet pulsation intensity (Ipul). Variations in the up-wind shear-layer vortical structures and recirculation area in the tube wake led to modification of flame behaviors. Applying Ipul > 0.55 led to significant improvement in mixing and combustion, and reduction of combustion-induced pollutants. Exciting the jet at 215 Hz (resonance frequency)
resulted to six characteristic flame modes in the domain of jet pulsation intensity. Flame behavior was closely related to shear-layer vortical structures in the near tube region. In flame modes I and II (0 < Ipul < 0.35) flames were dominated by shear-layer vortices, while at modes III-VI (0.35 < Ipul < 2.28), the flames were dominated by a puffing bent jet. Exciting the jet at Ipul < 0.90 led to significant improvement in mixing and combustion, and reduction of
combustion-induced pollutants in the near field. Three flame characteristic modes were identified when the jet was excited at 645 Hz (3rd harmonic). Mode I (0 < Ipul < 0.30) flames were unresponsive to excitation, mode II (0.30 < Ipul < 0.70) flames were rapidly shortened and highly non-luminous, and mode III (Ipul > 0.70) flames were highly unstable. Improved temperature and reduced combustion-induced pollutants were achieved when the jet was excited at Ipul > 0.30. The study established that pulsating a low R jet flame in crossflow at 0.30
< Ipul < 0.60 may result to improved combustion and reduction of combustion-induced pollutants for the three excitation frequencies examined.

CONTENTS 中文摘要 .............................................................................................................................. 1 ABSTRACT .........................................................................................................................ii ACKNOWLEDGEMENT.................................................................................................... iv CONTENTS ........................................................................................................................ vi NOMENCLATURE...........................................................................................................viii TABLE CAPTIONS ............................................................................................................. x FIGURE CAPTIONS ............................................................................................................ x CHAPTER 1 Introduction .................................................................................................... 1 1.1 Motivation .............................................................................................................. 1 1.2 Literature Review.................................................................................................... 3 1.3 Scope of Present Work............................................................................................ 5 CHAPTER 2 Experimental Methods.................................................................................... 7 2.1 Experimental Apparatus.......................................................................................... 7 2.1.1 Wind tunnel ..................................................................................................... 7 2.1.2 Jet flow supply system..................................................................................... 8 2.1.3 Acoustic excitation system............................................................................... 9 2.1.4 Jet and crossflow particle generators .............................................................. 10 2.2 Experimental Instruments and Methods................................................................. 13 2.2.1 Detection of jet pulsations.............................................................................. 13 2.2.2 Flame and flow pattern visualization.............................................................. 14 2.2.3 Temperature measurements............................................................................ 16 2.2.4 Combustion product concentrations measurements ........................................ 16 2.2.5 PIV measurements ......................................................................................... 17 CHAPTER 3 Jet Flame in Crossflow Excited at Low Excitation Frequency ....................... 19 3.1 Jet Velocity Pulsations at Burner Exit ................................................................... 19 3.2 Flame Behavior and Characteristic Modes ............................................................ 21 3.3 Instantaneous Flame and Flow Characteristics ...................................................... 26 3.4 Flame Temperature Distributions .......................................................................... 29 3.5 Concentration Distributions of Combustion Products ............................................ 32 3.6 Time-averaged Flow/Flame Field Characteristics.................................................. 35 3.6.1 Time-averaged velocity field.......................................................................... 35 3.6.2 Turbulence Characteristics ............................................................................. 38 3.6.3 Jet trajectory .................................................................................................. 42 CHAPTER 4 Jet Flame in Crossflow Excited at Resonance Frequency .............................. 44 4.1 Jet Velocity Pulsations at Burner Exit ................................................................... 44 4.2 Flame Behavior and Characteristic Modes ............................................................ 45 4.3 Instantaneous Flame and Flow Characteristics ...................................................... 50 4.4 Flame Temperature Distributions .......................................................................... 55 4.5 Concentration Distributions of Combustion Products ............................................ 60 4.6 Time-averaged Flow/Flame Field Characteristics.................................................. 64 4.6.1. Time-averaged velocity field.......................................................................... 64 4.6.2. Turbulence characteristics.............................................................................. 66 4.6.3. Jet trajectory .................................................................................................. 69 CHAPTER 5 Jet Flame in Crossflow Excited at High Excitation Frequency....................... 70 5.1 Jet Velocity Pulsations at Burner Exit ................................................................... 70 5.2 Flame Behavior and Characteristic Modes ............................................................ 71 5.3 Instantaneous Flame and Flow Characteristics ...................................................... 75 5.4 Flame Temperature Distributions .......................................................................... 77 5.5 Concentration Distributions of Combustion Products ............................................ 81 5.6 Time-averaged Flow/Flame Field Characteristics.................................................. 84 5.6.1. Time-averaged velocity field.......................................................................... 84 5.6.2. Turbulence characteristics.............................................................................. 85 5.6.3. Jet trajectory .................................................................................................. 87 CHAPTER 6 Discussion .................................................................................................... 89 6.1 Jet Velocity Pulsations at Burner Exit ................................................................... 89 6.2 Flame Behaviors and Characteristics..................................................................... 91 6.3 Flame Temperature ............................................................................................... 94 6.4 Combustion Products Concentrations.................................................................... 96 6.4.1 Unburned hydrocarbons (HC).............................................................................. 96 6.4.2 Carbon monoxide (CO) ....................................................................................... 97 6.4.3 Nitric oxide (NO) ................................................................................................ 98 6.5 Jet Flow Characteristics ........................................................................................ 99 6.6 Jet and Flame Trajectories................................................................................... 100 CHAPTER 7 Conclusions and Recommendations ............................................................ 102 7.1 Conclusions ........................................................................................................ 102 7.2 Recommendations............................................................................................... 105 References ........................................................................................................................ 106 TABLE CAPTIONS Table 2.1 Characteristics of 5 μm MgO particles in propane gas ............. 112 Table 2.2 Characteristics of 5 μm MgO particles in air ..................... 113 Table 2.3 Characteristics of 0.5 μm MgO particles in propane gas............ 114 Table 2.4 Characteristics of 0.5 μm MgO particles in air ................... 115 FIGURE CAPTIONS Fig. 2.1 Arrangement of experimental setup................................... 116 Fig. 2.2 Schematic diagram of MgO particle generators. (a) Fluidized bed generator, (b)Cyclone generator. ............................................ 117 Fig. 2.3 MgO particle micrographs as viewed using a Scanning Electron Microscope (SEM)........................................................................ 118 Fig. 3.1 Pulsations of jet exit velocities under acoustic excitation. (a) Variation of root-meansquare value with excitation frequency, (b) variation of jet pulsation intensity with excitation Strouhal number.Rew = 0,Rej = 1550...119 Fig. 3.2 Jet pulsation characteristics at jet exit. (a-d) Instantaneous jet exit velocity at Ipul = 0.09,0.43,0.66,0.81;(e-f) Power spectral density function at Ipul = 0.09, 0.43, 0.66, 0.81. fexc = 60 Hz,Rew = 0, Rej = 1550. ............ 120 Fig. 3.3 Jet pulsation characteristics at jet exit. (a) Variation of jet pulsation velocity with excitation voltage, (b) Variation of jet pulsation intensity with excitation Strouhal number. fexc = 60 Hz, Rew = 0, Rej = 1550. ............................................................................. 121 Fig. 3.4 Regimes of characteristic modes for an acoustically excited flame stack-issued jet flame in crossflow. Rew = 1416, Rej = 1550, R = 0.192 ............ 122 Fig. 3.5 Flame appearances of side view. Ipul = (a, b) 0, (c, d) 0.09 (mode I), (e, f) 0.32 (mode II), (g, h) 0.52 (mode II), (i, j) 0.66 (mode III), (k, l) 0.81 (mode IV). Left column: full size; Right column: close-up. Rew = 1416, Rej = 1550, R = 0.192, fexc = 60 Hz. Exposure time: 2 s.......................... 123 Fig. 3. 6 Flame appearances of down view. Ipul = (a, b) 0, (c, d) 0.09 (mode I), (e, f) 0.32 (modeII), (g, h) 0.52 (mode II), (i, j) 0.66 (mode III), (k, l) 0.81 (mode IV). Left column: full size;Right column: close-up. Rew = 1416, Rej = 1550, R = 0.192, fexc = 60 Hz. Exposure time: 2 s............................ 124 Fig. 3.7 Variations of: (a) total flame length ltf, blue flame length lbf, and recirculation flame width wrf with jet pulsation intensity Ipul, (b) flame spread width bf with jet pulsation intensity Ipul. Rew = 1416, Rej = 1550, R = 0.192, fexc = 60 Hz. ........................................................ 125 Fig. 3.8 Variation of flame spread width with axial distance. Rew = 1416, Rej = 1550, fexc = 60 Hz, R = 0.192................................................ 126 Fig. 3.9 Flame extinguishment process. Rew = 1416, Rej = 1550, R = 0.192, fexc = 60 Hz, Ipul = 0.85. Exposure time: 17 ms. ................................... 127 Fig. 3.10 Axial location of flame base during flame extinguishment process. Rew = 1416, Rej = 1550, R = 0.192, fexc = 60 Hz, Ipul = 0.85. ................... 128 Fig. 3.11 Instantaneous flame appearances of side view. Ipul = (a, b) 0, (c, d) 0.09 (mode I), (e,f) 0.32 (mode II), (g, h) 0.52 (mode II), (i, j) 0.66 (mode III), (k, l) 0.81 (mode IV). Left column: full size; Right column: close-up. Rew = 1416, Rej = 1550, R = 0.192, fexc = 60 Hz. Framing rate: 2000 fps. Exposure time: 0.5 ms................................................................. 129 Fig. 3.12 Instantaneous flow patterns in symmetry plane and side view of flame. Ipul = (a) 0,(b) 0.09 (mode I), (c) 0.32 (mode II), (d) 0.52 (mode II), (e) 0.66 (mode III), (f) 0.81 (mode IV). Rew = 1416, Rej = 1550, R = 0.192, fexc = 60 Hz. Framing rate = 2000 fps. Exposure time:0.2 ms. .............................. 130 Fig. 3.13 Temperature distributions in symmetry plane. (a-e) Ipul = 0 (natural flame), (f-j) Ipul = 0.09 (mode I), (k-o) Ipul = 0.31 (mode II), (p-t) Ipul = 0.62 (mode III), (u-y) Ipul = 0.80 (mode IV). x/d = (a, f, k, p, u) 5, (b, g, l, q, v) 10, (c, h, m, r, w) 20, (d, i, n, s, x) 30, (e, j, o, t, y) 40.Rew = 1416, Rej = 1550, fexc = 60 Hz, R = 0.192.......................................... 131 Fig. 3.14 Variation of maximum symmetry plane flame temperature Tmax with jet pulsation intensity at various axial stages downstream. Rew = 1416, Rej = 1550, fexc = 60 Hz, R = 0.192. .................................................... 132 Fig. 3.15 Temperature distributions in transverse direction at x/d = 5. (a-d) Ipul = 0 (natural flame), (e-h) Ipul = 0.09 (mode I), (i-l) Ipul = 0.31 (mode II), (m-p) Ipul = 0.62 (mode III), (q-t)Ipul = 0.80 (mode IV). z/d = (a, e, i, m, q) 0, (b, f, j, n, r) -4, (c, g, k, o, s) -10, (d, h, l, p, t) -14. Rew = 1416, Rej = 1550, fexc = 60 Hz, R = 0.192.............................. 133 Fig. 3.16 Temperature distributions in transverse direction at x/d = 20. (a-d) Ipul = 0 (naturalflame), (e-h) Ipul = 0.09 (mode I), (i-l) Ipul = 0.31 (mode II), (m-p) Ipul = 0.62 (mode III), (q-t)Ipul = 0.80 (mode IV). z/d = (a, e, i, m, q) 2, (b, f, j, n, r) 0, (c, g, k, o, s) -2, (d, h, l, p, t) -4. Rew = 1416, Rej = 1550, fexc = 60 Hz, R = 0.192. ................................ 134 Fig. 3.17 Temperature distributions in transverse direction at x/d = 40. (a-d) Ipul = 0 (natural flame), (e-h) Ipul = 0.09 (mode I), (i-l) Ipul = 0.31 (mode II), (m-p) Ipul = 0.62 (mode III), (q-t)Ipul = 0.80 (mode IV). Rew = 1416, Rej = 1550, fexc = 60 Hz, R = 0.192................................................ 135 Fig. 3.18 Concentration distributions of unburned hydrocarbons (HC) in the symmetry plane.(a-e) Ipul = 0 (natural flame), (f-j) Ipul = 0.09 (mode I), (k-o) Ipul = 0.31 (mode II), (p-t) Ipul = 0.62 (mode III), (u-y) Ipul = 0.80 (mode IV). x/d = (a, f, k, p, u) 5, (b, g, l, q, v) 10, (c, h, m, r,w) 20, (d, i, n, s, x) 30, (e, j, o, t, y) 40. Rew = 1416, Rej = 1550, fexc = 60 Hz, R = 0.192. ............................................................................. 136 Fig. 3.19 Concentration distributions of carbon monoxide (CO) in the symmetry plane. (a-e)Ipul = 0 (natural flame), (f-j) Ipul = 0.09 (mode I), (k-o) Ipul = 0.31 (mode II), (p-t) Ipul = 0.62 (mode III), (u-y) Ipul = 0.80 (mode IV). x/d = (a, f, k, p, u) 5, (b, g, l, q, v) 10, (c, h, m, r, w) 20,(d, i, n, s, x) 30, (e, j, o, t, y) 40. Rew = 1416, Rej = 1550, fexc = 60 Hz, R = 0.192.......... 137 Fig. 3.20 Concentration distributions of nitric oxide (NO) in the symmetry plane. (a-e) Ipul = 0 (natural flame), (f-j) Ipul = 0.09 (mode I), (k-o) Ipul = 0.31 (mode II), (p-t) Ipul = 0.62 (mode III),(u-y) Ipul = 0.80 (mode IV). x/d = (a, f, k, p, u) 5, (b, g, l, q, v) 10, (c, h, m, r, w) 20, (d, i, n, s,x) 30, (e, j, o, t, y) 40. Rew = 1416, Rej = 1550, fexc = 60 Hz, R = 0.192. ........ 138 Fig. 3.21 Time-averaged velocity field vectors and streamlines of a combusting transverse jet at Rej = 1480, R = 0.192, fexc = 60 Hz. (a) Ipul = 0 (non-excited case), (b) Ipul = 0.09 (mode I),(c) Ipul = 0.31 (mode II), (d) Ipul = 0.62 (mode III), (e) Ipul = 0.80 (mode IV). Frame rate = 5000 fps, exposure time = 140 μs, elapse time 1 s. ............................................................ 139 Fig. 3.22 Jet flow/flame field time-averaged velocity vectors and streamlines of a combusting transverse jet at Rej = 1480, R = 0.192, fexc = 60 Hz. (a) Ipul = 0 (non-excited case), (b) Ipul = 0.09 (mode I), (c) Ipul = 0.31 (mode II), (d) Ipul = 0.62 (mode III), (e) Ipul = 0.80 (mode IV).Frame rate = 5000 fps, exposure time = 140 μs, elapse time 1 s..................................... 140 Fig. 3.23 Axial turbulence intensity contour maps in the symmetry plane of a combusting transverse jet. (a) Ipul = 0 (non-excited case), (b) Ipul = 0.09 (mode I), (c) Ipul = 0.31 (mode II),(d) Ipul = 0.62 (mode III), (e) Ipul = 0.80 (mode IV). Rej = 1480, R = 0.192, fexc = 60 Hz............................... 141 Fig. 3.24 Transverse turbulence intensity contour maps in the symmetry plane of a combusting transverse jet. (a) Ipul = 0 (non-excited case), (b) Ipul = 0.09 (mode I), (c) Ipul = 0.31 (mode II),(d) Ipul = 0.62 (mode III), (e) Ipul = 0.80 (mode IV). Rej = 1480, R = 0.192, fexc = 60 Hz............................... 142 Fig. 3.25 Normalized vorticity contour maps in the symmetry plane of a combusting transverse jet at Rej = 1480, R = 0.192, fexc = 60 Hz. (a) Ipul = 0 (non-excited case), (b) Ipul = 0.09 (mode I), (c) Ipul = 0.31 (mode II), (d) Ipul = 0.62 (mode III), (e) Ipul = 0.80 (mode IV)............................ 143 Fig. 3.26 Centerline streamline trajectories of un-excited and excited transverse combusting jet. Rej = 1480, R = 0.192, fexc = 60 Hz............... 144 Fig. 4.1 Jet pulsation characteristics at jet exit. (a-f) Instantaneous jet exit velocity at Ipul = 0.09,0.28, 0.57, 1.11, 1.51, 2.08; (g-l) Power spectral density function at Ipul = 0.09, 0.28, 0.57, 1.11,1.51, 2.08. fexc = 215 Hz, Rew = 0, Rej = 1550.............................................................. 145 Fig. 4.2 Instantaneous jet flow pattern of evolution in the symmetry plane of pulsed elevated jet at zero crossflow conditions. Rej = 1550, fexc = 215 Hz, Ipul = 2.43. Framing rate = 3000 fps,exposure time = 0.33 ms................. 146 Fig. 4.3 Jet pulsation characteristics at jet exit. (a) Variation of jet pulsation velocity with excitation voltage, (b) Variation of jet pulsation intensity with excitation Strouhal number. fexc = 215 Hz, Rew = 0, Rej = 1550. ............................................................................. 147 Fig. 4.4 Side view of long exposure flame pictures. Ipul = (a, b) 0 (no excitation), (c, d) 0.05 (mode I), (e, f) 0.22 (mode II), (g, h) 0.55 (mode III), (i, j) 1.19 (mode IV), (k, l) 1.75 (mode V), (m, n) 2.18 (mode VI). Left column: full size; Right column: close-up. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz. Exposure time = 2 s. ......................................... 148 Fig. 4.5 Top view of long exposure flame pictures. Ipul = (a, b) 0 (no excitation), (c, d) 0.05 (mode I), (e, f) 0.22 (mode II), (g, h) 0.55 (mode III), (i, j) 1.19 (mode IV), (k, l) 1.75 (mode V), (m, n) 2.18 (mode VI). Left column: full size; Right column: close-up. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz. Exposure time = 2 s. ......................................... 149 Fig. 4.6 Variations of total flame length ltf, blue flame length lbf, and recirculation flame width wrf with jet pulsation intensity Ipul. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz. ........................................... 150 Fig. 4.7 Variation of flame spread width with axial distance. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz.............................................. 151 Fig. 4.8 Histogram of flame blow-off process. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz, Ipul = 2.28. Exposure time = 16.7 ms. ........................ 152 Fig. 4.9 Axial position of flame base during flame blow-off process. Rew = 1399, Rej = 1530,R = 0.192, fexc = 215 Hz, Ipul = 2.28. ........................... 153 Fig. 4.10 Side view of instantaneous flame pictures. Ipul = (a, b) 0 (no excitation), (c, d) 0.05 (mode I), (e, f) 0.22 (mode II), (g, h) 0.55 (mode III), (i, j) 1.19 (mode IV), (k, l) 1.75 (mode V), (m, n) 2.18 (mode VI). Left column: full size; Right column: close-up. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz. Frame rate = 2000 fps. Exposure time = 0.5 ms. ............... 154 Fig. 4.11 Instantaneous flow patterns and flame images in symmetry plane (y/d = 0). Ipul = (a)0 (no excitation), (b) 0.05 (mode I), (c) 0.22 (mode II), (d) 0.55 (mode III), (e) 0.95 (mode IV),(f) 1.19 (mode IV), (g) 1.75 (mode V), (h) 2.18 (mode VI). Rew = 1399, Rej = 1530, R = 0.192,fexc = 215 Hz. Frame rate = 2000 fps. Exposure time = 0.2 ms. ................................................ 155 Fig. 4. 12 Temperature distribution in symmetry plane (y/d = 0). Ipul = (a1-e1) 0 (no excitation),(a2-e2) 0.05 (mode I), (a3-e3) 0.22 (mode II), (a4-e4) 0.51 (mode III), (a5-e5) 0.92 (mode IV),(a6-e6) 1.51 (mode V). x/d = (a1-a6) 5, (b1-b6) 10, (c1-c6) 20, (d1-d6) 30, (e1-e6) 40. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz. ....................................................... 156 Fig. 4.13 Variation of maximum flame temperature (Tmax) in the symmetry plane with jet pulsation intensity at various axial stages downstream. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz. ........................................... 157 Fig. 4.14 Temperature distribution in transverse direction at x/d = 5. Ipul = (a-d) 0 (no excitation),(e-h) 0.05 (mode I), (i-l) 0.22 (mode II), (m-p) 0.51 (mode III), (q-t) 0.92 (mode IV), (u-x) 1.51(mode V). Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz. ..................................................... 158 Fig. 4.15 Temperature distribution in transverse direction at x/d = 20. Ipul = (a-d) 0 (no excitation), (e-h) 0.05 (mode I), (i-l) 0.22 (mode II), (m-p) 0.51 (mode III), (q-t) 0.92 (mode IV), (u-x) 1.51 (mode V). Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz....................................................... 159 Fig. 4.16 Temperature distribution in transverse direction at x/d = 40. Ipul = (a-d) 0 (no excitation), (e-h) 0.05 (mode I), (i-l) 0.22 (mode II), (m-p) 0.51 (mode III), (q-t) 0.92 (mode IV), (u-x) 1.51 (mode V). Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz....................................................... 160 Fig. 4.17 Concentration distributions of unburned hydrocarbons (HC) in the symmetry plane.Ipul = (a1-e1) 0 (no excitation), (a2-e2) 0.05 (mode I), (a3-e3) 0.22 (mode II), (a4-e4) 0.51 (mode III), (a5-e5) 0.92 (mode IV), (a6-e6) 1.51 (mode V). x/d = (a1-a6) 5, (b1-b6) 10, (c1- c6) 20, (d1-d6) 30, (e1-e6) 40. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz. ............................... 161 Fig. 4.18 Concentration distributions of carbon monoxide (CO) in the symmetry plane. Ipul = (a1-e1) 0 (no excitation), (a2-e2) 0.05 (mode I), (a3-e3) 0.22 (mode II), (a4-e4) 0.51 (mode III),(a5-e5) 0.92 (mode IV), (a6-e6) 1.51 (mode V). x/d = (a1-a6) 5, (b1-b6) 10, (c1-c6) 20, (d1-d6) 30, (e1-e6) 40. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz. ....................................... 162 Fig. 4.19 Concentration distributions of nitric oxide (NO) in the symmetry plane. Ipul = (a1-e1)0 (no excitation), (a2-e2) 0.05 (mode I), (a3-e3) 0.22 (mode II), (a4-e4) 0.51 (mode III), (a5-e5) 0.92 (mode IV), (a6-e6) 1.51 (mode V). x/d = (a1-a6) 5, (b1-b6) 10, (c1-c6) 20, (d1-d6) 30,(e1-e6) 40. Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz. ....................................... 163 Fig. 4.20 Time-averaged velocity vectors and streamlines of a combusting transverse jet at symmetry plane. Rej = 1480, R = 0.192, fexc = 215 Hz. (a) Ipul = 0 (non-excited case), (b) Ipul = 0.05 (mode I), (c) Ipul = 0.22 (mode II), (d) Ipul = 0.51 (mode III), (e) Ipul = 0.92 (mode IV), (f)Ipul = 1.35 (mode V), (g) Ipul = 1.80 (mode V), (h) Ipul = 2.13 (mode VI). Frame rate = 5000 fps, exposure time = 140 μs, elapse time 1 s..................................... 164 Fig. 4.21 Axial turbulence intensity contour maps in the symmetry plane of a combusting transverse jet. Rej = 1480, R = 0.192, fexc = 215 Hz. (a) Ipul = 0 (non-excited case), (b) Ipul = 0.05 (mode I), (c) Ipul = 0.22 (mode II), (d) Ipul = 0.51 (mode III), (e) Ipul = 0.92 (mode IV), (f)Ipul = 1.35 (mode V), (g) Ipul = 1.80 (mode V), (h) Ipul = 2.13 (mode VI).............................. 165 Fig. 4.22 Transverse turbulence intensity contour maps in the symmetry plane of a combusting transverse jet. Rej = 1480, R = 0.192, fexc = 215 Hz. (a) Ipul = 0 (non-excited case), (b) Ipul = 0.05 (mode I), (c) Ipul = 0.22 (mode II), (d) Ipul = 0.51 (mode III), (e) Ipul = 0.92 (mode IV), (f)Ipul = 1.35 (mode V), (g) Ipul = 1.80 (mode V), (h) Ipul = 2.13 (mode VI).............................. 166 Fig. 4.23 Normalized vorticity contour maps in the symmetry plane of a combusting transverse jet. Rej = 1480, R = 0.192, fexc = 215 Hz. (a) Ipul = 0 (non-excited case), (b) Ipul = 0.05 (mode I), (c) Ipul = 0.22 (mode II), (d) Ipul = 0.51 (mode III), (e) Ipul = 0.92 (mode IV), (f) Ipul = 1.35 (mode V), (g) Ipul = 1.80 (mode V), (h) Ipul = 2.13 (mode VI).............................. 167 Fig. 4.24 Centreline streamline trajectories of un-excited and excited transverse combusting jet. Rej = 1480, R = 0.192, fexc = 215 Hz. ............ 168 Fig. 5.1 Jet pulsation characteristics at jet exit. (a, c, e, g) Instantaneous jet exit velocity at Ipul = 0.08, 0.44, 0.64, 0.84; (b, d, f, h) Power spectral density function at Ipul = 0.08, 0.44, 0.64,0.84. Rew = 0, Rej = 1500, fexc = 645 Hz. ..................................................................... 169 Fig. 5.2 Jet pulsation characteristics at jet exit. (a) Variation of jet pulsation velocity with excitation voltage, (b) Variation of jet pulsation intensity with excitation Strouhal number. Rew = 0, Rej = 1500, fexc = 645 Hz. ............................................................................. 170 Fig. 5.3 Side view of long exposure flame pictures. Ipul = (a, b) 0 (no excitation), (c, d) 0.18 (mode I), (e, f) 0.45 (mode II), (g, h) 0.62 (mode II), (i, j) 0.74 (mode III), (k, l) 0.84 (mode III). Left column: full size; Right column: close-up. Rew = 1352, Rej = 1500, R = 0.192, fexc = 645 Hz. Exposure time = 2 s................................................................... 171 Fig. 5.4 Top view of long exposure flame pictures. Ipul = (a, b) 0 (no excitation), (c, d) 0.18 (mode I), (e, f) 0.45 (mode II), (g, h) 0.62 (mode II), (i, j) 0.74 (mode III), (k, l) 0.84 (mode III). Left column: full size; Right column: close-up. Rew = 1352, Rej = 1500, R = 0.192, fexc = 645 Hz. Exposure time = 2 s................................................................... 172 Fig. 5.5 Variations of total flame length ltf, blue flame length lbf, and recirculation flame width wrf with jet pulsation intensity Ipul. Rew = 1352, Rej = 1500, R = 0.192, fexc = 645 Hz. ........................................... 173 Fig. 5.6 Variation of flame lateral width with axial distance. Rew = 1352, Rej = 1500, R = 0.192,fexc = 645 Hz................................................ 174 Fig. 5.7 Side view of instantaneous flame pictures. Ipul = (a, b) 0 (no excitation), (c, d) 0.11 (mode I), (e, f) 0.18 (mode I), (g, h) 0.44 (mode II), (i, j) 0.62 (mode II), (k, l) 0.73 (mode III). Left column: full size; Right column: close-up. Rew = 1352, Rej = 1500, R = 0.192, fexc = 645 Hz. Frame rate = 2000 fps. Exposure time = 0.33 ms............................................ 175 Fig. 5.8 Instantaneous flow patterns and flame images in symmetry plane (y/d = 0). Ipul = (a) 0 (no excitation), (b) 0.11 (mode I), (c) 0.18 (mode I), (d) 0.44 (mode II), (e) 0.62 (mode II), (f)0.74 (mode III). Rew = 1352, Rej = 1500, R = 0.192, fexc = 645 Hz. Frame rate = 3000 fps.Exposure time = 0.33 ms.......... 176 Fig. 5.9 Temperature distribution in symmetry plane. Ipul = (a-e) 0 (no excitation), (f-j) 0.11 (mode I), (k-o) 0.44 (mode II), (p-t) 0.62 (mode II), (u-y) 0.73 (mode III). x/d = (a, f, k, p, u)5, (b, g, l, q, v) 10, (c, h, m, r, w) 15, (d, i, n, s, x) 20, (e, j, o, t, y) 30. Rew = 1352, Rej = 1500,R = 0.192, fexc = 645 Hz................................................................ 177 Fig. 5.10 Variation of maximum flame temperature (Tmax) with jet pulsation intensity at various axial stages downstream Rew = 1352, Rej = 1500, R = 0.192, fexc = 645 Hz. .............................................................. 178 Fig. 5.11 Temperature distribution in transverse direction at x/d = 5. Ipul = (a1-a7) 0 (no excitation), (b1-b7) 0.11 (mode I), (c1-c7) 0.44 (mode II), (d1-d7) 0.62 (mode II). Rew = 1352,Rej = 1500, R = 0.192, fexc = 645 Hz...... 179 Fig. 5.12 Temperature distribution in transverse direction at x/d = 15. Ipul = (a1-a7) 0 (no excitation), (b1-b7) 0.11 (mode I), (c1-c7) 0.44 (mode II), (d1-d7) 0.62 (mode II). Rew = 1352,Rej = 1500, R = 0.192, fexc = 645 Hz...... 180 Fig. 5.13 Temperature distribution in transverse direction at x/d = 30. Ipul = (a1-a7) 0 (no excitation), (b1-b7) 0.11 (mode I), (c1-c7) 0.44 (mode II), (d1-d7) 0.62 (mode II). Rew = 1352,Rej = 1500, R = 0.192, fexc = 645 Hz...... 181 Fig. 5.14 Concentration distributions of unburned hydrocarbons (HC) in the symmetry plane.Ipul = (a-e) 0 (no excitation), (f-j) 0.11 (mode I), (k-o) 0.44 (mode II), (p-t) 0.62 (mode II). x/d = (a, f, k, p) 5, (b, g, l, q) 10, (c, h, m, r) 15, (d, i, n, s) 20, (e, j, o, t) 30. Rew = 1352, Rej = 1500,R = 0.192, fexc = 645 Hz................................................................ 182 Fig. 5.15 Concentration distributions of carbon monoxide (CO) in the symmetry plane. Ipul = (a-e) 0 (no excitation), (f-j) 0.11 (mode I), (k-o) 0.44 (mode II), (p-t) 0.62 (mode II). x/d = (a,f, k, p) 5, (b, g, l, q) 10, (c, h, m, r) 15, (d, i, n, s) 20, (e, j, o, t) 30. Rew = 1352, Rej = 1500, R = 0.192, fexc = 645 Hz....................................................................... 183 Fig. 5.16 Concentration distributions of nitric oxide (NO) in the symmetry plane. Ipul = (a-e) 0 (no excitation), (f-j) 0.11 (mode I), (k-o) 0.44 (mode II), (p-t) 0.62 (mode II). x/d = (a, f, k, p)5, (b, g, l, q) 10, (c, h, m, r) 15, (d, i, n, s) 20, (e, j, o, t) 30. Rew = 1352, Rej = 1500, R = 0.192,fexc = 645 Hz....................................................................... 184 Fig. 5.17 Time-averaged velocity vectors and streamlines of a combusting transverse jet at symmetry plane. Ipul = (a) 0 (non-excited case), (b) 0.11 (mode I), (c) 0.18 (mode I), (d) 0.30 (mode I), (e) 0.44 (mode II), (f) 0.62 (mode II), (g) 0.68 (mode III), (h) 0.72 (mode III). Rej = 1500, R = 0.192, fexc = 645 Hz, frame rate = 5000 fps, exposure time = 140 μs, elapse time 1 s.....185 Fig. 5.18 Axial turbulence intensity contour maps in the symmetry plane of a combusting transverse jet at symmetry plane. Ipul = (a) 0 (non-excited case), (b) 0.11 (mode I), (c) 0.18 (mode I), (d) 0.30 (mode I), (e) 0.44 (mode II), (f) 0.62 (mode II), (g) 0.68 (mode III), (h) 0.72 (mode III). Rej = 1500, R = 0.192, fexc = 645 Hz................................................................ 186 Fig. 5.19 Transverse turbulence intensity contour maps in the symmetry plane of a combusting transverse jet at symmetry plane. Ipul = (a) 0 (non-excited case), (b) 0.11 (mode I), (c) 0.18 (mode I), (d) 0.30 (mode I), (e) 0.44 (mode II), (f) 0.62 (mode II), (g) 0.68 (mode III), (h) 0.72 (mode III). Rej = 1500, R = 0.192, fexc = 645 Hz................................................................ 187 Fig. 5.20 Normalized vorticity contour maps in the symmetry plane of a combusting transverse jet at symmetry plane. Ipul = (a) 0 (non-excited case), (b) 0.11 (mode I), (c) 0.18 (mode I), (d)0.30 (mode I), (e) 0.44 (mode II), (f) 0.62 (mode II), (g) 0.68 (mode III), (h) 0.72 (mode III).Rej = 1500, R = 0.192, fexc = 645 Hz................................................................ 188 Fig. 5. 21 Centreline streamline trajectories of un-excited and excited transverse combusting jet. Rej = 1500, R = 0.192, fexc = 645 Hz.............. 189 Fig. 6.1 Variation of peak frequency power spectral energy with excitation voltage, Eexc. R = 0.192 .................................................... 190 Fig. 6.2 Variation of non-dimensional total flame length with jet pulsation at fexc = 60, 215 and 645 Hz. R = 0.192. ....................................... 191 Fig. 6.3 Variation of non-dimensional blue flame length with jet pulsation at fexc = 60, 215 and 645 Hz. R = 0.192. ....................................... 192 Fig. 6.4 Variation of non-dimensional recirculation flame width with jet pulsation at fexc = 60,215 and 645 Hz. R = 0.192............................. 193 Fig. 6.5 Jet shear-layer vortical structure and flame waviness response to jet pulsation intensity.Rew = 1399, Rej = 1530, R = 0.192, fexc = 215 Hz......... 194 Fig. 6.6 Normalized maximum flame temperature. (a) fexc = 60 Hz, (b) fexc = 215 Hz, and (c)fexc = 645 Hz. R = 0.192. ........................................ 195 Fig. 6.7 Normalized maximum unburned hydrocarbon concentration. (a) fexc = 60 Hz, (b) fexc = 215 Hz, and (c) fexc = 645 Hz. R = 0.192. .................... 196 Fig. 6.8 Normalized maximum carbon monoxide concentrations. (a) fexc = 60 Hz, (b) fexc = 215 Hz, and (c) fexc = 645 Hz. R = 0.192.......................... 197 Fig. 6.9 Normalized maximum nitric oxide concentrations. (a) fexc = 60 Hz, (b) fexc = 215 Hz,and (c) fexc = 645 Hz. R = 0.192. ............................. 198 Fig. 6.10 Flame mean (NO) trajectory. (a) fexc = 60 Hz, (b) fexc = 215 Hz, and (c) fexc = 645 Hz.R = 0.192. ................................................ 199

References
[1] Karagozian, A. R. Transverse jets and their control. Progress in Energy and Combustion Science. 2010;36(5):531-53. doi: 10.1016/j.pecs.2010.01.001.
[2] Kamotani Y., Greber, I. Experiments on a turbulent jet in a crossflow. AIAA Journal. 1972;10(11):1425-9. doi: 10.2514/3.50386.
[3] Fric, T. F., Roshko, A. Vortical structure in the wake of a transverse jet. Journal of Fluid Mechanics. 1994;279:1-47. doi: 10.1017/S0022112094003800.
[4] Smith, S. H., Mungal, M. G. Mixing, structure and scaling of the jet in crossflow. Journal of Fluid Mechanics. 1998;357:83-122. doi: 10.1017/S0022112097007891.
[5] Pratte, B. D., Baines, W. D. Profiles of the round turbulent jet in a crossflow. Journal of the Hydraulics Division. 1967;93(6):53-64.
[6] Huang, R. F., Lan J. Characteristic modes and evolution processes of shear-layer vortices in an elevated transverse jet. Physics of Fluids. 2005;17(3):034103.
doi: 10.1063/1.1852575.
[7] Eiff, O. S., Keffer, J. F. On the structures in the near-wake region of an elevated turbulent jet in a crossflow. Journal of Fluid Mechanics. 1997;333:161-95.
doi: 10.1017/S0022112096004314
[8] Huang, R. F., Hsieh, R. H. An experimental study of elevated round jets deflected in a crosswind. Experimental Thermal and Fluid Science. 2002;27(1):77-86.
doi: 10.1016/S0894-1777(02)00217-0.
[9] Ben-Yakar, A., Mungal, M., Hanson, R. Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Physics of Fluids. 2006;18(2):026101. doi: 10.1063/1.2139684
[10] Savas, O., Huang, R. F., Gollahalli, S. R. Structure of the flow field of a nonpremixed gas jet flame in cross-flow. Journal of Energy Resources Technology. 1997;119(2):137-44. doi:10.1115/1.2794977.
[11] Huang, R. F., Chang, J. M. The stability and visualized flame and flow structures of a combusting jet in crossflow. Combustion and Flame. 1994;98(3):267-78.
doi: 10.1016/0010-2180(94)90241-0.
[12] Karagozian, A. R. The flame structure and vorticity generated by a chemically reacting transverse jet. AIAA Journal. 1986;24(9):1502-7. doi: 10.2514/3.9472.
[13] Kolla, H., Grout, R. W., Gruber, A., Chen, J. H. Mechanisms of flame stabilization and blowout in a reacting turbulent hydrogen jet in cross-flow. Combustion and Flame. 2012;159(8):2755-66. doi: 10.1016/j.combustflame.2012.01.012.
[14] Katta, V. R., Blunck, D. L., Jiang, N., Lynch, A., Gord, J. R., Roy, S. On flames established with air jet in cross flow of fuel-rich combustion products. Fuel. 2015;150:360-9. doi: 10.1016/j.fuel.2015.02.006.
[15] Gollahalli, S. R., Nanjundappa, B. Burner wake stabilized gas jet flames in cross-flow. Combustion Science and Technology. 1995;109(1-6):327-46.
doi: 10.1080/00102209508951908.
[16] Askari, A., Bullman, S. J., Fairweather, M., Swaffield, F. The concentration field of a turbulent jet in a cross-wind. Combustion Science and Technology. 1990;73(1-3):463-78. doi: 10.1080/00102209008951663.
[17] Huang, R. F., Yang, M. J. Thermal and concentration fields of burner-attached jet flames in crossflow. Combustion and Flame. 1996;105(1-2):211-24.
doi: 10.1016/0010-2180(95)00193-x.
[18] M’Closkey, R. T., King, J. M., Cortelezzi, L., Karagozian, A. R. The actively controlled jet in crossflow. Journal of Fluid Mechanics. 2002;452:325-35.
doi: 10.1017/S0022112001006589.
[19] Megerian, S., Davitian, J., De, B., Alves, L. S., Karagozian, A. R. Transverse-jet shear-layer instabilities. Part 1. Experimental studies. Journal of Fluid Mechanics. 2007;593:93-129. doi: 10.1017/s0022112007008385.
[20] Davitian, J., Hendrickson, C., Getsinger, D., M'Closkey, R. T, Karagozian, A.R. Strategic control of transverse jet shear layer instabilities. AIAA Journal. 2010;48(9):2145-56. doi: 10.2514/1.J050336.
[21] Hsu, C. M., Huang, R. F. Effects of acoustic excitation at resonance Strouhal numbers on characteristics of an elevated transverse jet. Experimental Thermal and Fluid Science. 2011;35(7):1370-82. doi: 10.1016/j.expthermflusci.2011.05.005.
[22] Huang, R. F., Hsu, C. M. Flow and mixing characteristics of an elevated pulsating transverse jet. Physics of Fluids. 2012;24(1):015104. doi: 10.1063/1.3678333.
[23] Ho, C-M., Gutmark, E. Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. Journal of Fluid Mechanics. 1987;179:383-405.
doi: 10.1017/S0022112087001587
[24] Gollahalli, S. R., Pardiwalla, D. Comparison of the flame characteristics of turbulent circular and elliptic jets in a crossflow. Journal of Energy Resources Technology. 2002;124(3):197-203. doi: 10.1115/1.1488170.
[25] Kibens, V. Discrete noise spectrum generated by acoustically excited jet. AIAA Journal. 1980;18(4):434-41. doi: 10.2514/3.50776.
[26] Furi, M., Papas, P., Rais, R. M., Monkewitz, P. A. The effect of flame position on the Kelvin-Helmholtz instability in non-premixed jet flames. Proceedings of the Combustion Institute. 2002;29(2):1653-61. doi: 10.1016/S1540-7489(02)80203-6.
[27] Schuller, T., Durox, D., Candel, S. Dynamics of and noise radiated by a perturbed impinging premixed jet flame. Combustion and Flame. 2002;128(1-2):88-110.
doi: 10.1016/S0010-2180(01)00334-0.
[28] Lieuwen, T., Torres, H., Johnson, C., Zinn, B. T. A mechanism of combustion instability in lean premixed gas turbine combustors. Journal of Engineering for Gas Turbines and Power. 2000;123(1):182-9. doi: 10.1115/1.1339002.
[29] Lawn, C. J., Polifke, W. A model for the thermoacoustic response of a premixed swirl burner, Part II: The flame response. Combustion Science and Technology. 2004;176(8):1359-90. doi: 10.1080/00102200490461623.
[30] Shreekrishna, H. S., Lieuwen, T. Premixed flame response to equivalence ratio perturbations. Combustion Theory and Modelling. 2010;14(5):681-714.
doi: 10.1080/13647830.2010.502247.
[31] Lee, K. M., Kim, T. K., Kim, W. J., Kim, S. G., Park. J., Keel, S. I. A visual study on flame behaviour in tone-excited non-premixed jet flames. Fuel. 2002;81(17):2249-55.
doi: 10.1016/S0016-2361(02)00150-3.
[32] Ramamurthi, K., Patnaik, R. E. Noise Reduction in non-premixed lifted jet flames. Flow, Turbulence and Combustion. 2004;72(1):49-67.
doi: 10.1023/B:APPL.0000014913.33474.b9.
[33] Linck, M., Gupta, A. K. Passive control of forced combustion instability in a swirl-stabilized spray combustor. Journal of Propulsion and Power. 2007;23(5):1113-22.
doi: 10.2514/1.15933.
[34] Saito, M., Sato, M., Nishimura A. Soot suppression by acoustic oscillated combustion. Fuel. 1998;77(9-10):973-8. doi: Doi 10.1016/S0016-2361(97)00286-X.
[35] Ezekoye, O. A., Martin, K. M., Bisetti F. Pulsed flow modulation of soot production in a laminar jet-diffusion flame. Proceedings of the Combustion Institute. 2005;30(1):1485-92. doi: 10.1016/j.proci.2004.08.200.
[36] Farhat, S., Kleiner, D., Zhang, Y. Jet diffusion flame characteristics in a loudspeaker-induced standing wave. Combustion and Flame. 2005;142(3):317-23.
doi: 10.1016/j.combustflame.2005.04.010.
[37] Chen, L-W., Wang, Q., Zhang, Y. Flow characterisation of diffusion flame under non-resonant acoustic excitation. Experimental Thermal and Fluid Science. 2013;45:227-33. doi: 10.1016/j.expthermflusci.2012.11.012.
[38] Farhat, S. A., Ng, W. B., Zhang, Y. Chemiluminescent emission measurement of a diffusion flame jet in a loudspeaker induced standing wave. Fuel. 2005;84(14-15):1760-7. doi: 10.1016/j.fuel.2005.03.020.
[39] Chen, L-W., Wang, Q., Zhang, Y. Flow characterisation of diffusion flame in a standing wave. Experimental Thermal and Fluid Science. 2012;41:84-93.
doi: 10.1016/j.expthermflusci.2012.03.014.
[40] Masahiro, I., Masahisa, S., Hiroshi, Y., Haruo, K., Kuniyuki, K., Ashwani G. Effect of oscillating excitation on a methane-air diffusion jet flame. 42nd AIAA Aerospace Sciences Meeting and Exhibit. Aerospace Sciences Meetings: American Institute of Aeronautics and Astronautics; 2004. doi: 10.2514/6.2004-815
[41] Chao, Y-C., Wu, C-Y., Yuan, T., Cheng, T-S. Stabilization process of a lifted flame tuned by acoustic excitation. Combustion Science and Technology. 2002;174(5-6):87-110. doi: 10.1080/713713035.
[42] Hardalupas, Y., Selbach, A. Imposed oscillations and non-premixed flames. Progress in Energy and Combustion Science. 2002;28(1):75-104.
doi: 10.1016/S0360-1285(01)00010-7.
[43] Loretero, M. E., Huang, R. F. Effects of acoustic excitation on a swirling diffusion flame. Journal of Engineering for Gas Turbines and Power. 2010;132(12):121501.
doi: 10.1115/1.4001768.
[44] El Behery, R. E., Mohamad, A. A., Kamal, M. M. Combustion enhancement of a gas flare using acoustical excitation. Combustion Science and Technology. 2005;177(9):1627-59. doi: 10.1080/00102200590956722.
[45] Marr, K. C., Clemens, N. T., Ezekoye, O. A. Mixing characteristics and emissions of strongly-forced non-premixed and partially-premixed jet flames in crossflow. Combustion and Flame. 2012;159(2):707-21.
doi: 10.1016/j.combustflame.2011.08.008.
[46] Ginevsky, A. S., Vlasov Y. V., Karavosov, R. K. Acoustic Control of Turbulent Jets. 2nd ed. Berlin Heidelberg: Springer-Verlag; 2004.
[47] Flagan, R. C., Seinfeld, J. H. Fundamentals of Air Pollution Engineering. Englewood Cliffs, New Jersey: Prentice Hall; 1988.
[48] Brennen, C. E. Fundamentals of Multiphase Flow. Reprint. ed. New York, U.S.A: Cambridge University Press; 2005.
[49] Mei, R. Velocity fidelity of flow tracer particles. Experiments in Fluids. 1996;22(1):1-13. doi:10.1007/BF01893300
[50] Zuckerwar, A. J. Handbook of the Speed of Sound in Real Gases, Vol. II Measurements. San Diego, California: Academic press; 2002.
[51] Keane, R. D., Adrian, R. J. Theory of cross-correlation analysis of PIV images. Applied Scientific Research. 1992;49(3):191-215. doi: 10.1007/bf00384623.
[52] Kinsler, L. E., Frey, A. R., Coppens, A. B., Sanders, J. V. Fundamentals of Acoustics. 4th ed. New York: John Wiley & Sons, Inc.; 2000.
[53] Smith, S. W. The Scientists and Engineer’s Guide to Digital Signal Processing. 2nd ed. San Diego, California: California Technical Publishing; 1999.
[54] Huang, R. F., Wang, S. M. Characteristic flow modes of a wake-stabilized jet flames in a transverse air stream. Combustion and Flame. 1999;117(1-2):59-77.
doi: 10.1016/S0010-2180(98)00070-4.
[55] Johnson, M. R., Wilson, D. J., Kostiuk, L. W. A fuel stripping mechanism for wake-stabilized jet diffusion flames in crossflow. Combustion Science and Technology. 2001;169(1):155-74. doi: 10.1080/00102200108907844.
[56] Gordon, M., Soria, J. PIV measurements of a zero-net-mass-flux jet in cross flow. Experiments in Fluids. 2002;33(6):863-72. doi:10.1007/s00348-002-0518-4
[57] Huang, R. F., Hsu, C. M. Turbulent flows of an acoustically excited elevated transverse jet. AIAA Journal. 2012;50(9):1964-78. doi: 10.2514/1.j051595.
[58] Huang, R. F., Chang, J. M. Coherent structure in a combusting jet in crossflow. AIAA journal. 1994;32(6):1120-5. doi: 10.2514/3.12110
[59] Savas, O., Huang, R. F., Gollahalli, S. R. Structure of the flow field of a non-premixed gas jet flame in cross-flow. Journal of Energy Resources Technology. 1997;119(2):137-44. doi: 10.1115/1.2794977.
[60] Melling, A. Tracer particles and seeding for particle image velocimetry. Measurements in Science and Technolgy 1997;8(12):1406-16. doi: 10.1088/0957-0233/8/12/005
[61] Hsu, C. M., Huang, R. F. Phase-resolved and time-averaged puff motions of an excited stack-issued transverse jet. Journal of Fluids and Structures. 2013;40:302-16.
doi: 10.1016/j.jfluidstructs.2013.05.004.
[62] Tritton, D. J. Physical Fluid Dynamics. 2nd ed. Oxford: Oxford University Press; 1988.
[63] Su, L. K., Mungal, M. G. Simultaneous measurements of scaler and velocity field evolution in turbuent crossflowing jet. Journal of Fluid Mechanics. 2004;513:1-45.
doi: 10.1017/S0022112004009401
[64] Johari, H., Pacheco-Tougas, M., Hermanson J. Penetration and mixing of fully modulated turbulent jets inc rossflow. AIAA Journal. 1999;37(7):842-50.
doi: 10.2514/2.7532
[65] Huang, R. F, Wang, S. M. Characteristic flow modes of wake-stabilized jet flames in a transverse air stream. Combustion and Flame. 1999;117(1-2):59-77.
doi: 10.1016/S0010-2180(98)00070-4.
[66] Lakshminarasimhan, K., Clemens, N. T., Ezekoye, O. A. Characteristics of strongly-forced turbulent jets and non-premixed jet flames. Experiments in Fluids. 2006;41(4):523-42. doi: 10.1007/s00348-006-0164-3.
[67] Davitian, J., Getsinger, D., Hendrickson, C., and Karagozian, A. R., “Transition to global instability in transverse-jet shear layers,” Journal of Fluid Mechanics, Vol. 661, 2010, pp. 294-315. doi: 10.1017/S0022112010003046

無法下載圖示 全文公開日期 2021/12/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE