簡易檢索 / 詳目顯示

研究生: DHANA LAKSHMI BUSIPALLI
DHANA LAKSHMI BUSIPALLI
論文名稱: Theoretical Studies on the Stability, Electronic and Optical Properties of Halide Perovskites
Theoretical Studies on the Stability, Electronic and Optical Properties of Halide Perovskites
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 陳良益
Liang-Yih Chen
Vijayakameswara Rao
Vijayakameswara Rao
郭哲來
Jer-Lai Kuo
許昭萍
Chao-Ping Hsu
葉丞豪
Chen-Hao Yeh
郭霽慶
Chi-Ching Kuo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 159
中文關鍵詞: Halide PerovskiteDensity Functional TheoryTime-Dependent Density Functional TheoryStabilityElectronic PropertiesOptical Properties
外文關鍵詞: Halide Perovskite, Density Functional Theory, Time-Dependent Density Functional Theory, Stability, Electronic Properties, Optical Properties
相關次數: 點閱:442下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

如何獲取乾淨能源並且利用可再生能源的能量是世界能源危機的主要挑戰,在此情況下,鉛鹵化鈣鈦礦因其高能量轉換效率和低成本因而引起了廣泛的注意及討論。為了開發和設計性能更好的光電設備,透過理論計算能進一步了解鈣鈦礦光電材料中發生的化學反應過程。因此,本篇博士論文研究方向著重在鹵化物鈣鈦礦的穩定性及理解其電子和光學性質。
金屬鹵化物鈣鈦礦已迅速發展,成為光伏領域中具有潛力的新一代半導體材料。其中,例如CH3NH3PbI3的有機金屬鹵化物鈣鈦礦,具有高光電轉換效率和低成本而成為備受關注的太陽能電池。然而,此半導體材料的化學穩定性差,為了改善此問題, 我們透過無機陽離子(Cs+)取代有機陽離子(CH3NH3+),以及鹵素離子(Br- and Cl-)取代I-。最近已有大量研究指出organo-metal halide 鈣鈦礦對濕氣很敏感,並提出多種導致OMH鈣鈦礦降解的機制。因此,了解水在CsPbI3中的作用至關重要。這裡首先使用密度泛函理論研究純CH3NH3PbI3和完全取代的化合物(CH3NH3PbBr3和CH3NH3PbCl3)在立方晶相和四方晶相中的結構、能量和電子性質。我們接著考慮混合鹵化物鈣鈦礦CH3NH3PbI2X(其中X = Br和Cl)的影響,並將其性能與CH3NH3PbI3進行比較。然後,我們探討無機陽離子在全無機碘化鉛鈣鈦礦CsPbI3中的作用,並將其性質與CH3NH3PbI3進行比較。計算結果指出,從四方晶相到立方晶相的相變減小了能隙。此外,鹵離子在幾何穩定性和電子能級中扮演著關鍵的作用,在CH3NH3PbI2X中,能隙的增加和晶格常數的減少更為明顯(I > Br > Cl)。
此外,了解水與鈣鈦礦相互作用並如何提高鈣鈦礦的結構穩定性為重要的議題。因此,在這項研究中,我們透過DFT計算研究γ-CsPbI3(220) 鈣鈦礦表面吸附水分子後的結構和電子性能。此外,我們進行了第一原理分子動力學模擬,探討水分子與γ-CsPbI3(220) 鈣鈦礦表面相互作用時導致的結構不穩定性,並將結果與立方晶體CH3NH3PbI3(100) 鈣鈦礦表面進行比較。計算結果表明,與CH3NH3PbI3(100) 表面相比,水分子與γ-CsPbI3 (220) 表面的相互作用更強。然而,AIMD結果表明前者更加穩定,並且在吸附水分子時未觀察到任何表面降解。
儘管全無機鈣鈦礦在潮濕環境下具有令人滿意的穩定性,但是生產具有高性能的裝置仍具有挑戰性。鈣鈦礦材料的競爭優勢使其成為發光應用中令人期待的候選材料,特別是在發光二極體上。在備受關注的鹵化鈣鈦礦中,最近引入了全無機溴化鉛銫,作為一種潛在的高性能電子鹵化鈣鈦礦材料。我們研究了利用空穴電子 電荷分離態的能量轉移進行鈣鈦礦發光二極體的研究。我們使用低成本的聚乙烯吡咯烷酮 證明了CsPbBr3鈣鈦礦的物理和化學特性。通過考慮PVP聚合物覆蓋表面,我們提出了在中性和空穴電子(h-e)電荷分離狀態下的反應機制。計算結果顯示在Cs7Pb2Br11鈣鈦礦團簇中添加和移除電子後的光學性質變化。計算結果顯示電荷分離狀態下結構(Pb-Br鍵長)的改變。與使用PVP聚合物進行表面改性的Cs7Pb2Br11鈣鈦礦簇相比,其擁有更高的吸附強度。


The main challenges in solving the world energy crises are energy harvesting from clean and renewable energy sources, and achieving a sustainable low carbon society. In this context, lead halide perovskites attracted much interest due to their high efficiency and low cost. A thorough understanding of the critical process occurring in perovskite optoelectronic materials by using either computational or experimental approach will help to develop devices with better performance. The general objective of this doctoral thesis contributes to the understanding of stabilities, electronic, and optical properties of halide perovskites.
Metal halide perovskites have rapidly emerged as a promising new generation of semiconducting materials in the fields of photovoltaics. In particular, organometal halide perovskites such as CH3NH3PbI3 are the most popular solar cells due to their high efficiency and low cost. However, they suffer severely from chemical instability. One of the possible ways to solve this problem is a chemical modification of CH3NH3PbI3, mainly by the substitution of halogen ion and the replacement of organic cation with an inorganic cation such as Cs-ion. Recently, numerous studies have demonstrated that organo-metal halide perovskites sensitive to moisture, and several degradation mechanisms have been proposed. Therefore, understanding the effects of water in CsPbI3 is of crucial importance. Hence, in this thesis, initially, the structural, energetic, and electronic properties of pure CH3NH3PbI3 and fully substituted compounds (CH3NH3PbBr3 and CH3NH3PbCl3) in cubic and tetragonal phases have investigated using density functional theory calculations. The effects of mixed halide perovskites CH3NH3PbI2X (where X = Br and Cl) are also considered and compared their properties with CH3NH3PbI3. Then, we considered the effects of the inorganic cation in all-inorganic lead iodide perovskites CsPbI3 and compared their properties with CH3NH3PbI3. Our results indicate that the phase transformation from tetragonal to cubic phase decreases the bandgap. The calculated results show that the halide ion plays a vital role in the geometrical stability and electronic levels. An increase in the bandgap and a reduction in the lattice constants are more apparent in CH3NH3PbI2X (I > Br > Cl).
An understanding of the interaction of water with perovskite is crucial in improving the structural stability of the perovskite. Hence, in this research, the structural and electronic properties of the γ-CsPbI3(220) perovskite surface upon the adsorption of water molecules have been investigated based on density functional theory calculations. Furthermore, first-principles ab initio molecular dynamics simulations have carried out to explore the structural instability upon the interaction of water molecules with the γ-CsPbI3 (220) perovskite surface, and the results are compared with the cubic CH3NH3PbI3(100) perovskite surface. The computed results indicate that the water molecules show stronger interactions with the γ-CsPbI3 (220) surface than the CH3NH3PbI3(100) surface. However, ab initio molecular dynamics results demonstrate that the former is much more stable, and no trace of surface degradation was observed upon the adsorption of water molecules.
Although all-inorganic perovskites have satisfactory stability under moisture environment, producing the device with high performance is challenging. The competitive advantages of perovskite materials make them exciting candidates for light-emitting applications, especially on light-emitting diodes. Among the vital family of lead halide perovskites, one particular case of all-inorganic cesium lead bromide was recently introduced as a potentially high-performance lead halide perovskite material for optoelectronics. We investigated the perovskite light-emitting diodes utilizing energy transfer from hole-electron charge-separated state. Here, we demonstrated the molecular behaviour of CsPbBr3 perovskite, using low-cost poly(vinylpyrrolidone). We presented the density functional theory study on a neutral and hole-electron charge-separated state by considering the poly(vinylpyrrolidone) polymer to cover the surface. We theoretically characterize the optical properties of Cs7Pb2Br11 perovskite cluster upon adding and removing an electron from the neutral system. Our results demonstrate that the charge-separated state shows structural changes (Pb-Br bond lengths). Compared to Cs7Pb2Br11 perovskite cluster on surface modification with PVP polymer, it shows improved adsorption intensity. Finally, we used the density functional theory and time-dependent density functional theory to calculate the reorganization energies for charge transfer rates to analyze the hole-electron charge separated state.

摘要 i ABSTRACT iii ACKNOWLEDGMENTS vi List of Abbreviations and Acronyms xi List of Figures xiii List of Tables xvii CHAPTER 1 : Introduction 1 1.1 Back Ground: 1 1.2 Overview of Perovskite Solar cells: 5 1.2.1 Components of the PSCs: 5 1.2.2 Working Principle of Perovskite Solar Cells: 11 1.2.3 Stability of PSCs: 13 1.2.4 Improvement of cell stability: 18 1.2.5 Toxicity: 21 1.3 Power Conversion Efficiency: 22 1.4 Present Study: 24 CHAPTER 2 : Theoretical Background 26 2.1 Ab initio Calculations: 26 2.2 Born-Oppenheimer Approximation: 26 2.3 Fundamentals of Density Functional Theory (DFT): 28 2.3.1 The Hohenberg-Kohn Theorems: 28 2.3.2 The Kohn-Sham Method: 29 2.3.3 Exchange-correlational Functional: 29 2.4 Brillouin-Zones: 32 2.5 Geometry optimization: 33 2.6 Pseudopotentials: 34 2.7 Time-Dependent Density Functional Theory: 35 2.8 Basis set: 36 2.9 Solvent effect: 38 CHAPTER 3 : Theoretical Study of Halide and Mixed Halide Perovskite Solar Cells: Effect of Halide Atoms on the Stability and Electronic Properties 40 3.1 Introduction: 40 3.2 Computational Details: 41 3.3 Results and Discussion: 42 3.3.1 Electronic Properties of CH3NH3PbI3: 44 3.3.2 Effect of Halide Substitution: 46 3.3.3 Effect of Mixed Halide Substitution: 49 3.4 Conclusion: 57 CHAPTER 4 : Enhance Moisture Stability of Cesium Lead Iodide Perovskite Solar Cells – A First-principles Molecular Dynamic Study 58 4.1 Introduction: 58 4.2 Computational Details: 60 4.3 Results and Discussion: 62 4.3.1 H2O adsorption on γ-CsPbI3(220) surfaces: 64 4.3.2 Electronic Properties of H2O Adsorption on the γ-CsPbI3(220) Surface: 66 4.3.3 Adsorption of two/dimer H2O molecules on the γ-CsPbI3(220) surface: 70 4.3.4 Stability of the γ-CsPbI3(220) Surface upon Water Adsorption: 72 4.4 Conclusion: 77 CHAPTER 5 : Exploring the Optoelectronic and Properties of the Hole-Electron Charge-Separated State of CsPbBr3 Perovskite 78 5.1 Introduction: 78 5.2 Computational Details: 80 5.3 Results and Discussion: 82 5.3.1 Structural properties of Cs7Pb2Br11 at neutral state and hole-electron (h-e) charge-separated state: 83 5.3.2 Optical Properties: 88 5.3.3 Frontier molecular orbitals: 90 5.4 Conclusion: 93 CHAPTER 6 : Summary 95 REFERENCES 97 APPENDICES 117

1. Bai, Y.; Mora-Sero, I.; De Angelis, F.; Bisquert, J.; Wang, P., Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chem. Rev. 2014, 114, 10095-10130.
2. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G., Electrolytes in Dye-Sensitized Solar Cells. Chem. Rev. 2015, 115, 2136-2173.
3. Sovacool, B. K., National Context Drives Concerns. Nat. Energy 2018, 3, 820-821.
4. Ramanathan, V.; Feng, Y., Air Pollution, Greenhouse Gases and Climate Change: Global and Regional Perspectives. Atmos. Environ. 2009, 43, 37-50.
5. Zuberi, M. J. S.; Ali, S. F., Greenhouse Effect Reduction by Recovering Energy from Waste Landfills in Pakistan. Renew. Sustain. Energy Rev. 2015, 44, 117-131.
6. Perez, M.; Perez, R., Update 2015--a Fundamental Look at Supply Side Energy Reserves for the Planet. Nat. Gas 2015, 2, 215.
7. U.S. Energy Information Administration. International Energy Outlook 2019; 2019
8. Williams, R., Becquerel Photovoltaic Effect in Binary Compounds. J. Chem. Phys. 1960, 32, 1505-1514.
9. Becquerel, M. E., Mémoire Sur Les Effets Électriques Produits Sous L'influence Des Rayons Solaires. Comptes rendus hebdomadaires des séances de l'Académie des sciences 1839, 9, 561-567.
10. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf
11. Shin, S. S.; Yang, W. S.; Noh, J. H.; Suk, J. H.; Jeon, N. J.; Park, J. H.; Kim, J. S.; Seong, W. M.; Seok, S. I., High-Performance Flexible Perovskite Solar Cells Exploiting Zn2SnO4 Prepared in Solution Below 100 C. Nat. Commun. 2015, 6, 1-8.
12. Liu, D.; Kelly, T. L., Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nat. Photon. 2014, 8, 133-138.
13. Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T. M., Research Update: Large-Area Deposition, Coating, Printing, and Processing Techniques for the Upscaling of Perovskite Solar Cell Technology. APL Mater. 2016, 4, 091508.
14. Park, N.-G., Organometal Perovskite Light Absorbers toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. J. Phys. Chem. Lett. 2013, 4, 2423-2429.
15. Kumar, M. H.; Yantara, N.; Dharani, S.; Graetzel, M.; Mhaisalkar, S.; Boix, P. P.; Mathews, N., Flexible, Low-Temperature, Solution Processed Zno-Based Perovskite Solid State Solar Cells. Chem. Commun. 2013, 49, 11089-11091.
16. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
17. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 2011, 3, 4088-4093.
18. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 1-7.
19. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643-647.
20. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764-1769.
21. Wang, J. T.-W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J., Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Lett. 2014, 14, 724-730.
22. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234-1237.
23. Stranks, S. D.; Snaith, H. J., Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. Nat. Nanotechnol. 2015, 10, 391-402.
24. Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S., Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes. Science 2015, 350, 1222-1225.
25. Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y., Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors. Nat. Mater. 2015, 14, 636-642.
26. Zhang, F.; Yang, B.; Zheng, K.; Yang, S.; Li, Y.; Deng, W.; He, R., Formamidinium Lead Bromide Perovskite Microcrystals for Sensitive and Fast Photodetectors.
27. Chu, L.; Hu, R.; Liu, W.; Ma, Y.; Zhang, R.; Yang, J.; Li, X. a., Screen Printing Large-Area Organometal Halide Perovskite Thin Films for Efficient Photodetectors. Mater. Res. Bull. 2018, 98, 322-327.
28. Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X.; Han, S.; Liang, L.; Yi, Z., All-Inorganic Perovskite Nanocrystal Scintillators. Nature 2018, 561, 88-93.
29. Chu, L.; Ahmad, W.; Liu, W.; Yang, J.; Zhang, R.; Sun, Y.; Yang, J.; Li, X. a., Lead-Free Halide Double Perovskite Materials: A New Superstar toward Green and Stable Optoelectronic Applications. Nanomicro Lett 2019, 11, 16.
30. Tonui, P.; Oseni, S. O.; Sharma, G.; Yan, Q.; Tessema Mola, G., Perovskites Photovoltaic Solar Cells: An Overview of Current Status. Renew. Sust. Energ. Rev. 2018, 91, 1025-1044.
31. Rose, G., De Novis Quibusdam Fossilibus Quae in Montibus Uraliis Inveniuntur; Schade, 1839.
32. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium Lead Trihalide: A Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells. Energy Environ. Sci. 2014, 7, 982-988.
33. Tanaka, K.; Kondo, T., Bandgap and Exciton Binding Energies in Lead-Iodide-Based Natural Quantum-Well Crystals. Sci. Technol. Adv. Mater 2003, 4, 599-604.
34. Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J., Electron-Hole Diffusion Lengths> 175 Μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science 2015, 347, 967-970.
35. Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A., High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science 2015, 347, 522-525.
36. Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G., Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells. J. Am. Chem. Soc. 2014, 136, 8094-8099.
37. Zhang, Q.; Su, R.; Du, W.; Liu, X.; Zhao, L.; Ha, S. T.; Xiong, Q., Advances in Small Perovskite‐Based Lasers. Small Methods 2017, 1, 1700163.
38. Wang, H.; Kim, D. H., Perovskite-Based Photodetectors: Materials and Devices. Chem. Soc. Rev 2017, 46, 5204-5236.
39. Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D., Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science 1999, 286, 945-947.
40. Goldschmidt, V. M., Die Gesetze Der Krystallochemie. Naturwissenschaften 1926, 14, 477-485.
41. Goldschmidt, V. M., Crystal Structure and Chemical Correlation. Ber. Dtsch. Chem. Ges 1927, 60, 1263-1296.
42. Kieslich, G.; Sun, S.; Cheetham, A. K., Solid-State Principles Applied to Organic–Inorganic Perovskites: New Tricks for an Old Dog. Chem. Sci. 2014, 5, 4712-4715.
43. Saparov, B.; Mitzi, D. B., Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558-4596.
44. Xiao, Z.; Yan, Y., Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials. Adv. Energy Mater. 2017, 7, 1701136.
45. Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z., Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites. Acta. Crystallogr. B. Struct. Sci. 2008, 64, 702-707.
46. Lian, J.; Lu, B.; Niu, F.; Zeng, P.; Zhan, X., Electron‐Transport Materials in Perovskite Solar Cells. Small Methods 2018, 2, 1800082.
47. Zhou, D.; Zhou, T.; Tian, Y.; Zhu, X.; Tu, Y., Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. J. Nanomater. 2018, 2018.
48. Li, X.; Dai, S.-M.; Zhu, P.; Deng, L.-L.; Xie, S.-Y.; Cui, Q.; Chen, H.; Wang, N.; Lin, H., Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays. ACS Appl. Mater. Interfaces 2016, 8, 21358-21365.
49. Mahmood, K.; Swain, B. S.; Amassian, A., 16.1% Efficient Hysteresis‐Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays. Adv. Energy Mater. 2015, 5, 1500568.
50. Yu, Z.; Sun, L., Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells. Adv. Energy Mater. 2015, 5, 1500213.
51. Hawash, Z.; Ono, L. K.; Raga, S. R.; Lee, M. V.; Qi, Y., Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-Meotad Films. Chem. Mater. 2015, 27, 562-569.
52. Hendriks, K. H.; van Franeker, J. J.; Bruijnaers, B. J.; Anta, J. A.; Wienk, M. M.; Janssen, R. A. J., 2-Methoxyethanol as a New Solvent for Processing Methylammonium Lead Halide Perovskite Solar Cells. J. Mater. Chem. A 2017, 5, 2346-2354.
53. Ryu, S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Yang, W. S.; Seo, J.; Seok, S. I., Voltage Output of Efficient Perovskite Solar Cells with High Open-Circuit Voltage and Fill Factor. Energy Environ. Sci. 2014, 7, 2614-2618.
54. Yin, X.; Chen, P.; Que, M.; Xing, Y.; Que, W.; Niu, C.; Shao, J., Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOX Hole Contacts. ACS nano 2016, 10, 3630-3636.
55. Madhavan, V. E.; Zimmermann, I.; Roldán-Carmona, C.; Grancini, G.; Buffiere, M.; Belaidi, A.; Nazeeruddin, M. K., Copper Thiocyanate Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells. ACS Energy Lett. 2016, 1, 1112-1117.
56. Wang, R.; Mujahid, M.; Duan, Y.; Wang, Z. K.; Xue, J.; Yang, Y., A Review of Perovskites Solar Cell Stability. Adv. Funct. Mater. 2019, 29, 1808843.
57. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y., A Hole-Conductor–Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability. Science 2014, 345, 295-298.
58. Marinova, N.; Valero, S.; Delgado, J. L., Organic and Perovskite Solar Cells: Working Principles, Materials and Interfaces. J. Colloid Interface Sci. 2017, 488, 373-389.
59. Marchioro, A.; Brauer, J. C.; Teuscher, J.; Grätzel, M.; Moser, J.-E. In Photoinduced Processes in Lead Iodide Perovskite Solid-State Solar Cells, 2013; International Society for Optics and Photonics: p 881108.
60. Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J., Organometal Halide Perovskite Solar Cells: Degradation and Stability. Energy Environ. Sci. 2016, 9, 323-356.
61. Mesquita, I.; Andrade, L.; Mendes, A., Perovskite Solar Cells: Materials, Configurations and Stability. Renew. Sustain. Energy Rev. 2018, 82, 2471-2489.
62. Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L., Investigation of Ch3nh3pbi3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. ACS nano 2015, 9, 1955-1963.
63. Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V., Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite Upon Controlled Exposure to Humidified Air. J. Am. Chem. Soc. 2015, 137, 1530-1538.
64. Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J., Overcoming Ultraviolet Light Instability of Sensitized TiO2 with Meso-Superstructured Organometal Tri-Halide Perovskite Solar Cells. Nat. Commun. 2013, 4, 1-8.
65. Li, D.; Bretschneider, S. A.; Bergmann, V. W.; Hermes, I. M.; Mars, J.; Klasen, A.; Lu, H.; Tremel, W.; Mezger, M.; Butt, H.-J. r., Humidity-Induced Grain Boundaries in MAPbI3 Perovskite Films. J. Phys. Chem. C 2016, 120, 6363-6368.
66. Guo, X.; McCleese, C.; Kolodziej, C.; Samia, A. C. S.; Zhao, Y.; Burda, C., Identification and Characterization of the Intermediate Phase in Hybrid Organic–Inorganic MAPbI3 Perovskite. Dalton Trans. 2016, 45, 3806-3813.
67. Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V., Making and Breaking of Lead Halide Perovskites. Acc. Chem. Res. 2016, 49, 330-338.
68. Ju, M.-G.; Chen, M.; Zhou, Y.; Dai, J.; Ma, L.; Padture, N. P.; Zeng, X. C., Toward Eco-Friendly and Stable Perovskite Materials for Photovoltaics. Joule 2018, 2, 1231-1241.
69. Zhao, J.; Cai, B.; Luo, Z.; Dong, Y.; Zhang, Y.; Xu, H.; Hong, B.; Yang, Y.; Li, L.; Zhang, W., Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment. Sci. Rep. 2016, 6, 21976.
70. Long, M.; Zhang, T.; Chai, Y.; Ng, C.-F.; Mak, T. C. W.; Xu, J.; Yan, K., Nonstoichiometric Acid–Base Reaction as Reliable Synthetic Route to Highly Stable CH3NH3PbI3 Perovskite Film. Nat. Commun. 2016, 7, 1-11.
71. Leguy, A. M. A.; Hu, Y.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; Van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J., Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chem. Mater. 2015, 27, 3397-3407.
72. Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A., Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Lett. 2014, 14, 2584-2590.
73. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast Oxygen Diffusion and Iodide Defects Mediate Oxygen-Induced Degradation of Perovskite Solar Cells. Nat. Commun. 2017, 8, 15218-15218.
74. Zhang, L.; Sit, P. H. L., Ab Initio Study of the Role of Oxygen and Excess Electrons in the Degradation of CH3NH3PbI3. J. Mater. Chem. A 2017, 5, 9042-9049.
75. Pearson, A. J.; Eperon, G. E.; Hopkinson, P. E.; Habisreutinger, S. N.; Wang, J. T. W.; Snaith, H. J.; Greenham, N. C., Oxygen Degradation in Mesoporous Al2O3/CH3NH3PbI3‐XClX Perovskite Solar Cells: Kinetics and Mechanisms. Adv. Energy Mater. 2016, 6, 1600014.
76. Sun, Q.; Fassl, P.; Becker‐Koch, D.; Bausch, A.; Rivkin, B.; Bai, S.; Hopkinson, P. E.; Snaith, H. J.; Vaynzof, Y., Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films. Adv. Energy Mater. 2017, 7, 1700977.
77. Ouyang, Y.; Li, Y.; Zhu, P.; Li, Q.; Gao, Y.; Tong, J.; Shi, L.; Zhou, Q.; Ling, C.; Chen, Q., Photo-Oxidative Degradation of Methylammonium Lead Iodide Perovskite: Mechanism and Protection. J. Mater. Chem. A 2019, 7, 2275-2282.
78. Yang, J.; Kelly, T. L., Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. Inorg. Chem. 2017, 56, 92-101.
79. Aristidou, N.; Sanchez‐Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A., The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angew. Chem. Int. 2015, 54, 8208-8212.
80. Supasai, T.; Rujisamphan, N.; Ullrich, K.; Chemseddine, A.; Dittrich, T., Formation of a Passivating CH3NH3PbI3/PbI2 Interface During Moderate Heating of CH3NH3PbI3 Layers. Appl. Phys. Lett. 2013, 103, 183906.
81. Dualeh, A.; Gao, P.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M., Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chem. Mater. 2014, 26, 6160-6164.
82. Rong, Y.; Liu, L.; Mei, A.; Li, X.; Han, H., Beyond Efficiency: The Challenge of Stability in Mesoscopic Perovskite Solar Cells. Adv. Energy Mater. 2015, 5, 1501066.
83. Philippe, B.; Park, B.-W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M. J.; Rensmo, H. k., Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures-A Photoelectron Spectroscopy Investigation. Chem. Mater. 2015, 27, 1720-1731.
84. Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F., Defect Migration in Methylammonium Lead Iodide and Its Role in Perovskite Solar Cell Operation. Energy Environ. Sci. 2015, 8, 2118-2127.
85. Elumalai, N. K.; Uddin, A., Hysteresis in Organic-Inorganic Hybrid Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 157, 476-509.
86. Domanski, K.; Correa-Baena, J.-P.; Mine, N.; Nazeeruddin, M. K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M., Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. ACS nano 2016, 10, 6306-6314.
87. Deng, Y.; Dong, Q.; Bi, C.; Yuan, Y.; Huang, J., Air‐Stable, Efficient Mixed‐Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer. Adv. Energy Mater. 2016, 6, 1600372.
88. Kato, Y.; Ono, L. K.; Lee, M. V.; Wang, S.; Raga, S. R.; Qi, Y., Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes. Adv. Mater. Interfaces 2015, 2, 1500195.
89. Yu, D.; Hu, Y.; Shi, J.; Tang, H.; Zhang, W.; Meng, Q.; Han, H.; Ning, Z.; Tian, H., Stability Improvement under High Efficiency—Next Stage Development of Perovskite Solar Cells. Sci. China Chem. 2019, 62, 684-707.
90. Slavney, A. H.; Smaha, R. W.; Smith, I. C.; Jaffe, A.; Umeyama, D.; Karunadasa, H. I., Chemical Approaches to Addressing the Instability and Toxicity of Lead–Halide Perovskite Absorbers. Inorg. Chem. 2017, 56, 46-55.
91. Matteocci, F.; Cinà, L.; Lamanna, E.; Cacovich, S.; Divitini, G.; Midgley, P. A.; Ducati, C.; Di Carlo, A., Encapsulation for Long-Term Stability Enhancement of Perovskite Solar Cells. Nano Energy 2016, 30, 162-172.
92. Chen, J.; Cai, X.; Yang, D.; Song, D.; Wang, J.; Jiang, J.; Ma, A.; Lv, S.; Hu, M. Z.; Ni, C., Recent Progress in Stabilizing Hybrid Perovskites for Solar Cell Applications. J. Power Sources 2017, 355, 98-133.
93. Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F., Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting. Nano Lett. 2014, 14, 3608-3616.
94. Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F., First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. J. Phys. Chem. C 2013, 117, 13902-13913.
95. Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G., MAPbI3-XClX Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chem. Mater. 2013, 25, 4613-4618.
96. Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K., Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2016, 28, 284-292.
97. Eperon, G. E.; Paterno, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J., Inorganic Caesium Lead Iodide Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 19688-19695.
98. Leijtens, T.; Giovenzana, T.; Habisreutinger, S. N.; Tinkham, J. S.; Noel, N. K.; Kamino, B. A.; Sadoughi, G.; Sellinger, A.; Snaith, H. J., Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 5981-5989.
99. Kim, J. H.; Liang, P. W.; Williams, S. T.; Cho, N.; Chueh, C. C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y., High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer. Adv. Mater. 2015, 27, 695-701.
100. Haque, M. A.; Sheikh, A. D.; Guan, X.; Wu, T., Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1602803.
101. Zhang, F.; Yang, X.; Cheng, M.; Wang, W.; Sun, L., Boosting the Efficiency and the Stability of Low Cost Perovskite Solar Cells by Using CuPc Nanorods as Hole Transport Material and Carbon as Counter Electrode. Nano Energy 2016, 20, 108-116.
102. Cheacharoen, R.; Rolston, N.; Harwood, D.; Bush, K. A.; Dauskardt, R. H.; McGehee, M. D., Design and Understanding of Encapsulated Perovskite Solar Cells to Withstand Temperature Cycling. Energy Environ. Sci. 2018, 11, 144-150.
103. Cheacharoen, R.; Boyd, C. C.; Burkhard, G. F.; Leijtens, T.; Raiford, J. A.; Bush, K. A.; Bent, S. F.; McGehee, M. D., Encapsulating Perovskite Solar Cells to Withstand Damp Heat and Thermal Cycling. Sustain. Energy Fuels 2018, 2, 2398-2406.
104. Bush, K. A.; Palmstrom, A. F.; Zhengshan, J. Y.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T., 23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability. Nat. Energy 2017, 2, 1-7.
105. Kim, H.; Lim, K.-G.; Lee, T.-W., Planar Heterojunction Organometal Halide Perovskite Solar Cells: Roles of Interfacial Layers. Energy Environ. Sci. 2016, 9, 12-30.
106. Li, W.; Dong, H.; Guo, X.; Li, N.; Li, J.; Niu, G.; Wang, L., Graphene Oxide as Dual Functional Interface Modifier for Improving Wettability and Retarding Recombination in Hybrid Perovskite Solar Cells. J. Mater. Chem. A 2014, 2, 20105-20111.
107. Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J., Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nat. Commun. 2014, 5, 1-7.
108. Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J., Perovskite–Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes. Nat. Commun. 2015, 6, 1-8.
109. Ye, S.; Rao, H.; Zhao, Z.; Zhang, L.; Bao, H.; Sun, W.; Li, Y.; Gu, F.; Wang, J.; Liu, Z., A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu (Thiourea) I. J. Am. Chem. Soc. 2017, 139, 7504-7512.
110. Ye, S.; Rao, H.; Yan, W.; Li, Y.; Sun, W.; Peng, H.; Liu, Z.; Bian, Z.; Li, Y.; Huang, C., A Strategy to Simplify the Preparation Process of Perovskite Solar Cells by Co‐Deposition of a Hole‐Conductor and a Perovskite Layer. Adv. Mater. 2016, 28, 9648-9654.
111. Tian, Y.; Zhou, C.; Worku, M.; Wang, X.; Ling, Y.; Gao, H.; Zhou, Y.; Miao, Y.; Guan, J.; Ma, B., Highly Efficient Spectrally Stable Red Perovskite Light‐Emitting Diodes. Adv. Mater. 2018, 30, 1707093.
112. Smith, I. C.; Hoke, E. T.; Solis‐Ibarra, D.; McGehee, M. D.; Karunadasa, H. I., A Layered Hybrid Perovskite Solar‐Cell Absorber with Enhanced Moisture Stability. Angew. Chem. Int. Ed. 2014, 53, 11232-11235.
113. Yokoyama, T.; Cao, D. H.; Stoumpos, C. C.; Song, T.-B.; Sato, Y.; Aramaki, S.; Kanatzidis, M. G., Overcoming Short-Circuit in Lead-Free Ch3nh3sni3 Perovskite Solar Cells Via Kinetically Controlled Gas–Solid Reaction Film Fabrication Process. J. Phys. Chem. Lett. 2016, 7, 776-782.
114. Abate, A., Perovskite Solar Cells Go Lead Free. Joule 2017, 1, 659-664.
115. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B., Lead-Free Organic–Inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy Environ. Sci. 2014, 7, 3061-3068.
116. Hoefler, S. F.; Trimmel, G.; Rath, T., Progress on Lead-Free Metal Halide Perovskites for Photovoltaic Applications: A Review. Monatsh. Chem. 2017, 148, 795-826.
117. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-Free Solid-State Organic–Inorganic Halide Perovskite Solar Cells. Nat. Photonics 2014, 8, 489.
118. Ke, W.; Kanatzidis, M. G., Prospects for Low-Toxicity Lead-Free Perovskite Solar Cells. Nat. Commun. 2019, 10, 965.
119. Shen, H.; Duong, T.; Wu, Y.; Peng, J.; Jacobs, D.; Wu, N.; Weber, K.; White, T.; Catchpole, K., Metal Halide Perovskite: A Game-Changer for Photovoltaics and Solar Devices Via a Tandem Design. Sci. Technol. Adv. Mater. 2018, 19, 53-75.
120. Sun, P.-P.; Li, Q.-S.; Yang, L.-N.; Li, Z.-S., Theoretical Insights into a Potential Lead-Free Hybrid Perovskite: Substituting Pb2+ with Ge2+. Nanoscale 2016, 8, 1503-1512.
121. Zhu, L.; Yuh, B.; Schoen, S.; Li, X.; Aldighaithir, M.; Richardson, B. J.; Alamer, A.; Yu, Q., Solvent-Molecule-Mediated Manipulation of Crystalline Grains for Efficient Planar Binary Lead and Tin Triiodide Perovskite Solar Cells. Nanoscale 2016, 8, 7621-7630.
122. Born, M.; Oppenheimer, R., Zur Quantentheorie Der Molekeln. Ann. Phys. 1927, 389, 457-484.
123. Hohenberg, P.; Kohn, W., Phys. Rev. B 1964, 136, 864-871.
124. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133.
125. Rg, P.; Yang, W., Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York: 1989.
126. Dirac, P. A. M., Note on Exchange Phenomena in the Thomas Atom. Math. Proc. Camb. Philos. Soc. 2008, 26, 376-385.
127. Perdew, J. P.; Burke, K.; Ernzerhof, M., Phys Rev Lett 77: 3865. Phys. Rev. Lett. 1996, 78, 1396.
128. Becke, A. D., Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. J. Chem. Phys. 1997, 107, 8554-8560.
129. Schmider, H. L.; Becke, A. D., Optimized Density Functionals from the Extended G2 Test Set. J. Chem. Phys. 1998, 108, 9624-9631.
130. Schlegel, H. B., Geometry Optimization. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 790-809.
131. Cramer, C. J., Essentials of Computational Chemistry: Theories and Models; John Wiley & Sons, 2013.
132. Jensen, F., Introduction to Computational Chemistry; John wiley & sons, 2017.
133. von Ragué Schleyer, P., Encyclopedia of Computational Chemistry. 1998.
134. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, a. J. D., Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Rev. Mod. Phys. 1992, 64, 1045.
135. Casida, M. E.; Casida, K. C.; Salahub, D. R., Excited‐State Potential Energy Curves from Time‐Dependent Density‐Functional Theory: A Cross Section of Formaldehyde's 1a1 Manifold. Int. J. Quantum Chem. 1998, 70, 933-941.
136. Casida, M. E., Time-Dependent Density-Functional Theory for Molecules and Molecular Solids. J. Mol. Struct.: THEOCHEM 2009, 914, 3-18.
137. Adamo, C.; Jacquemin, D., The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845-856.
138. Reichardt, C., Solvents and Solvent Effects in Organic Chemistry, Vch Publ. Weinheim: 1988.
139. Weber, D., CH3NH3PbX3, ein Pb (Ⅱ)-System mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb (Ⅱ)-System with Cubic Perovskite Structure. Z. Naturforsch. B 1978, 33, 1443-1445.
140. Kawamura, Y.; Mashiyama, H.; Hasebe, K., Structural Study on Cubic-Tetragonal Transition of CH3NH3PbI3. J. Phys. Soc. Japan 2002, 71, 1694-1697.
141. Ong, K. P.; Goh, T. W.; Xu, Q.; Huan, A., Structural Evolution in Methylammonium Lead Iodide CH3NH3PbI3. J. Phys. Chem. A 2015, 119, 11033-11038.
142. Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J., Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-State Sensitised Solar Cell Applications. J. Mater. Chem. A 2013, 1, 5628-5641.
143. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019-9038.
144. Wang, H.; Whittaker-Brooks, L.; Fleming, G. R., Exciton and Free Charge Dynamics of Methylammonium Lead Iodide Perovskites Are Different in the Tetragonal and Orthorhombic Phases. J. Phys. Chem. C 2015, 119, 19590-19595.
145. Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S., Band-Gap Tuning of Lead Halide Perovskites Using a Sequential Deposition Process. J. Mater. Chem. A 2014, 2, 9221-9225.
146. Edri, E.; Kirmayer, S.; Kulbak, M.; Hodes, G.; Cahen, D., Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. J. Phys. Chem. Lett. 2014, 5, 429-433.
147. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169-11186.
148. Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15-50.
149. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
150. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758-1775.
151. Blöchl, P. E., Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953-17979.
152. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188-5192.
153. Klimeš, J.; Bowler, D. R.; Michaelides, A., Van Der Waals Density Functionals Applied to Solids. Phys. Rev. B 2011, 83, 195131.
154. Klimeš, J.; Bowler, D. R.; Michaelides, A., Chemical Accuracy for the Van Der Waals Density Functional. J. Phys. Condens. Matter 2009, 22, 022201.
155. Tang, W.; Sanville, E.; Henkelman, G., A Grid-Based Bader Analysis Algorithm without Lattice Bias. J. Phys. Condens. Matter 2009, 21, 084204.
156. Poglitsch, A.; Weber, D., Dynamic Disorder in Methylammoniumtrihalogenoplumbates (Ⅱ) Observed by Millimeter‐Wave Spectroscopy. J. Chem. Phys. 1987, 87, 6373-6378.
157. Mashiyama, H.; Kurihara, Y.; Azetsu, T., Disordered Cubic Perovskite Structure of CH3NH3PbX3 (X= Cl, Br, I). J. Korean Phys. Soc. 1998, 32, S156-S158.
158. Geng, W.; Zhang, L.; Zhang, Y.-N.; Lau, W.-M.; Liu, L.-M., First-Principles Study of Lead Iodide Perovskite Tetragonal and Orthorhombic Phases for Photovoltaics. J. Phys. Chem. C 2014, 118, 19565-19571.
159. Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; De Angelis, F., The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. J. Phys. Chem. Lett. 2013, 5, 279-284.
160. Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y.; Wei, S.-H., Halide Perovskite Materials for Solar Cells: A Theoretical Review. J. Mater. Chem. A 2015, 3, 8926-8942.
161. Manser, J. S.; Christians, J. A.; Kamat, P. V., Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956-13008.
162. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J., Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells. Energy Environ. Sci. 2013, 6, 1739-1743.
163. Quarti, C.; Mosconi, E.; Ball, J. M.; D'Innocenzo, V.; Tao, C.; Pathak, S.; Snaith, H. J.; Petrozza, A.; De Angelis, F., Structural and Optical Properties of Methylammonium Lead Iodide across the Tetragonal to Cubic Phase Transition: Implications for Perovskite Solar Cells. Energy Environ. Sci. 2016, 9, 155-163.
164. Yin, W. J.; Shi, T.; Yan, Y., Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Adv. Mater. 2014, 26, 4653-4658.
165. Yin, W.-J.; Yan, Y.; Wei, S.-H., Anomalous Alloy Properties in Mixed Halide Perovskites. J. Phys. Chem. Lett. 2014, 5, 3625-3631.
166. Maculan, G.; Sheikh, A. D.; Abdelhady, A. L.; Saidaminov, M. I.; Haque, M. A.; Murali, B.; Alarousu, E.; Mohammed, O. F.; Wu, T.; Bakr, O. M., CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. J. Phys. Chem. Lett. 2015, 6, 3781-3786.
167. Hwang, B.; Gu, C.; Lee, D.; Lee, J.-S., Effect of Halide-Mixing on the Switching Behaviors of Organic-Inorganic Hybrid Perovskite Memory. Sci. Rep. 2017, 7, 43794.
168. Kitazawa, N.; Watanabe, Y.; Nakamura, Y., Optical Properties of CH3NH3PbX3 (X= Halogen) and Their Mixed-Halide Crystals. J. Mater. Sci. 2002, 37, 3585-3587.
169. Mitzi, D. B., Templating and Structural Engineering in Organic–Inorganic Perovskites. J. Chem. Soc., Dalton Trans 2001, 1-12.
170. Knutson, J. L.; Martin, J. D.; Mitzi, D. B., Tuning the Band Gap in Hybrid Tin Iodide Perovskite Semiconductors Using Structural Templating. Inorg. Chem. 2005, 44, 4699-4705.
171. Yamamoto, K.; Iikubo, S.; Yamasaki, J.; Ogomi, Y.; Hayase, S., Structural Stability of Iodide Perovskite: A Combined Cluster Expansion Method and First-Principles Study. J. Phys. Chem. C 2017, 121, 27797-27804.
172. Buin, A.; Comin, R.; Xu, J.; Ip, A. H.; Sargent, E. H., Halide-Dependent Electronic Structure of Organolead Perovskite Materials. Chem. Mater. 2015, 27, 4405-4412.
173. Park, B.-w.; Philippe, B.; Jain, S. M.; Zhang, X.; Edvinsson, T.; Rensmo, H.; Zietz, B.; Boschloo, G., Chemical Engineering of Methylammonium Lead Iodide/Bromide Perovskites: Tuning of Opto-Electronic Properties and Photovoltaic Performance. J. Mater. Chem. A 2015, 3, 21760-21771.
174. Hwang, B.; Gu, C.; Lee, D.; Lee, J.-S., Effect of Halide-Mixing on the Switching Behaviors of Organic-Inorganic Hybrid Perovskite Memory. Sci. Rep. 2017, 7, 1-8.
175. Mladenović, M.; Vukmirović, N., Effects of Thermal Disorder on the Electronic Structure of Halide Perovskites: Insights from MD Simulations. Phys. Chem. Chem. Phys. 2018, 20, 25693-25700.
176. Castelli, I. E.; García-Lastra, J. M.; Thygesen, K. S.; Jacobsen, K. W., Bandgap Calculations and Trends of Organometal Halide Perovskites. APL Mater. 2014, 2, 081514.
177. Borriello, I.; Cantele, G.; Ninno, D., Ab Initio Investigation of Hybrid Organic-Inorganic Perovskites Based on Tin Halides. Phys. Rev. B 2008, 77, 235214.
178. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395-398.
179. Jong, U.-G.; Yu, C.-J.; Ri, J.-S.; Kim, N.-H.; Ri, G.-C., Influence of Halide Composition on the Structural, Electronic, and Optical Properties of Mixed CH3NH3Pb(I1−XBrX)3 Perovskites Calculated Using the Virtual Crystal Approximation Method. Phys. Rev. B 2016, 94, 125139.
180. Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D., Reversible Photo-Induced Trap Formation in Mixed-Halide Hybrid Perovskites for Photovoltaics. Chem. Sci. 2015, 6, 613-617.
181. Zhang, B.; Guo, F.; Xue, J.; Yang, L.; Zhao, Y.; Ge, M.; Cai, Q.; Liu, B.; Xie, Z.; Chen, D., Photoluminescence Study of the Photoinduced Phase Separation in Mixed-Halide Hybrid Perovskite CH3NH3Pb(BrXI1− X)3 Crystals Synthesized Via a Solvothermal Method. Sci. Rep. 2017, 7, 1-8.
182. Kim, J.; Lee, S.-H.; Chung, C.-H.; Hong, K.-H., Systematic Analysis of the Unique Band Gap Modulation of Mixed Halide Perovskites. Phys. Chem. Chem. Phys. 2016, 18, 4423-4428.
183. Gao, P.; Grätzel, M.; Nazeeruddin, M. K., Organohalide Lead Perovskites for Photovoltaic Applications. Energy Environ. Sci. 2014, 7, 2448-2463.
184. Jung, H. S.; Park, N. G., Perovskite Solar Cells: From Materials to Devices. Small 2015, 11, 10-25.
185. Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D., Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 2019, 119, 3418-3451.
186. Tai, Q.; You, P.; Sang, H.; Liu, Z.; Hu, C.; Chan, H. L. W.; Yan, F., Efficient and Stable Perovskite Solar Cells Prepared in Ambient Air Irrespective of the Humidity. Nat. Commun. 2016, 7, 11105.
187. Zhu, Z.; Zhao, D.; Chueh, C.-C.; Shi, X.; Li, Z.; Jen, A. K. Y., Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule 2018, 2, 168-183.
188. Yan, J.; Lin, S.; Qiu, X.; Chen, H.; Li, K.; Yuan, Y.; Long, M.; Yang, B.; Gao, Y.; Zhou, C., Accelerated Hole-Extraction in Carbon-Electrode Based Planar Perovskite Solar Cells by Moisture-Assisted Post-Annealing. Appl. Phys. Lett. 2019, 114, 103503.
189. Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D., Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. J. Phys. Chem. Lett. 2016, 7, 167-172.
190. Kulbak, M.; Cahen, D.; Hodes, G., How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. J. Phys. Chem. Lett. 2015, 6, 2452-2456.
191. Li, D.; Liao, P.; Shai, X.; Huang, W.; Liu, S.; Li, H.; Shen, Y.; Wang, M., Recent Progress on Stability Issues of Organic–Inorganic Hybrid Lead Perovskite-Based Solar Cells. RSC Adv. 2016, 6, 89356-89366.
192. Frolova, L. A.; Anokhin, D. V.; Piryazev, A. A.; Luchkin, S. Y.; Dremova, N. N.; Stevenson, K. J.; Troshin, P. A., Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells Produced by Thermal Coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 2017, 8, 67-72.
193. Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T., Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. Adv. Energy Mater. 2016, 6, 1502458.
194. Tai, Q.; Tang, K.-C.; Yan, F., Recent Progress of Inorganic Perovskite Solar Cells. Energy Environ. Sci. 2019, 12, 2375-2405.
195. Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M., Quantum Dot–Induced Phase Stabilization of α-CsPbI3 Perovskite for High-Efficiency Photovoltaics. Science 2016, 354, 92-95.
196. Zhang, T.; Dar, M. I.; Li, G.; Xu, F.; Guo, N.; Grätzel, M.; Zhao, Y., Bication Lead Iodide 2D Perovskite Component to Stabilize Inorganic Α-CsPbI3 Perovskite Phase for High-Efficiency Solar Cells. Sci. Adv. 2017, 3, e1700841.
197. Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; Li, X.; Yang, X.; Yin, Z.; You, J., Solvent-Controlled Growth of Inorganic Perovskite Films in Dry Environment for Efficient and Stable Solar Cells. Nat. Commun. 2018, 9, 2225.
198. Wang, Y.; Zhang, T.; Kan, M.; Zhao, Y., Bifunctional Stabilization of All-Inorganic α-CsPbI3 Perovskite for 17% Efficiency Photovoltaics. J. Am. Chem. Soc. 2018, 140, 12345-12348.
199. Marronnier, A.; Roma, G.; Boyer-Richard, S.; Pedesseau, L.; Jancu, J.-M.; Bonnassieux, Y.; Katan, C.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J., Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. ACS Nano 2018, 12, 3477-3486.
200. Dastidar, S.; Hawley, C. J.; Dillon, A. D.; Gutierrez-Perez, A. D.; Spanier, J. E.; Fafarman, A. T., Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide. J. Phys. Chem. Lett. 2017, 8, 1278-1282.
201. Choi, H.; Jeong, J.; Kim, H.-B.; Kim, S.; Walker, B.; Kim, G.-H.; Kim, J. Y., Cesium-Doped Methylammonium Lead Iodide Perovskite Light Absorber for Hybrid Solar Cells. Nano Energy 2014, 7, 80-85.
202. Fu, Y.; Rea, M. T.; Chen, J.; Morrow, D. J.; Hautzinger, M. P.; Zhao, Y.; Pan, D.; Manger, L. H.; Wright, J. C.; Goldsmith, R. H., Selective Stabilization and Photophysical Properties of Metastable Perovskite Polymorphs of CsPbI3 in Thin Films. Chem. Mater. 2017, 29, 8385-8394.
203. Zhao, B.; Jin, S.-F.; Huang, S.; Liu, N.; Ma, J.-Y.; Xue, D.-J.; Han, Q.; Ding, J.; Ge, Q.-Q.; Feng, Y., Thermodynamically Stable Orthorhombic γ-CsPbI3 Thin Films for High-Performance Photovoltaics. J. Am. Chem. Soc. 2018, 140, 11716-11725.
204. Di Girolamo, D.; Dar, M. I.; Dini, D.; Gontrani, L.; Caminiti, R.; Mattoni, A.; Graetzel, M.; Meloni, S., Dual Effect of Humidity on Cesium Lead Bromide: Enhancement and Degradation of Perovskite Films. J. Mater. Chem. A 2019, 7, 12292-12302.
205. Yuan, X.; Hou, X.; Li, J.; Qu, C.; Zhang, W.; Zhao, J.; Li, H., Thermal Degradation of Luminescence in Inorganic Perovskite Cspbbr3 Nanocrystals. Phys. Chem. Chem. Phys. 2017, 19, 8934-8940.
206. Yuan, G.; Ritchie, C.; Ritter, M.; Murphy, S.; Gómez, D. E.; Mulvaney, P., The Degradation and Blinking of Single CsPbI3 Perovskite Quantum Dots. J. Phys. Chem. C 2017, 122, 13407-13415.
207. Sutton, R. J.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Giustino, F.; Snaith, H. J., Cubic or Orthorhombic? Revealing the Crystal Structure of Metastable Black-Phase CsPbI3 by Theory and Experiment. ACS Energy Lett. 2018, 3, 1787-1794.
208. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G., Improved Grid‐Based Algorithm for Bader Charge Allocation. J. Comput. Chem. 2007, 28, 899-908.
209. Bader, R. F. W., Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9-15.
210. Hoover, W. G., Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695-1697.
211. D. Syste`mes, Dassault Syste`mes BIOVIA, San Diego, 17.1 edn.
212. Wang, K.; Jin, Z.; Liang, L.; Bian, H.; Bai, D.; Wang, H.; Zhang, J.; Wang, Q.; Shengzhong, L., All-Inorganic Cesium Lead Iodide Perovskite Solar Cells with Stabilized Efficiency Beyond 15%. Nat. Commun. 2018, 9, 4544.
213. Kim, Y. G.; Kim, T.-Y.; Oh, J. H.; Choi, K. S.; Kim, Y.-J.; Kim, S. Y., Cesium Lead Iodide Solar Cells Controlled by Annealing Temperature. Phys. Chem. Chem. Phys. 2017, 19, 6257-6263.
214. Kumar, M.; Pawar, V.; Jha, P. A.; Gupta, S. K.; Sinha, A. S. K.; Jha, P. K.; Singh, P., Thermo-Optical Correlation for Room Temperature Synthesis: Cold-Sintered Lead Halides. J. Mater. Sci.: Mater. Electron. 2019, 30, 6071-6081.
215. Mosconi, E.; Azpiroz, J. M.; De Angelis, F., Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water. Chem. Mater. 2015, 27, 4885-4892.
216. Lu, Y.-B.; Cong, W.-Y.; Guan, C.; Sun, H.; Xin, Y.; Wang, K.; Song, S., Light Enhanced Moisture Degradation of Perovskite Solar Cell Material CH3NH3PbI3. J. Mater. Chem. A 2019, 7, 27469-27474.
217. Zhang, L.; Sit, P. H. L., Ab Initio Study of Interaction of Water, Hydroxyl Radicals, and Hydroxide Ions with CH3NH3PbI3 and CH3NH3PbBr3 Surfaces. J. Phys. Chem. C 2015, 119, 22370-22378.
218. Dong, X.; Fang, X.; Lv, M.; Lin, B.; Zhang, S.; Ding, J.; Yuan, N., Improvement of the Humidity Stability of Organic–Inorganic Perovskite Solar Cells Using Ultrathin Al2O3 Layers Prepared by Atomic Layer Deposition. J. Mater. Chem. A 2015, 3, 5360-5367.
219. Grancini, G.; D'Innocenzo, V.; Dohner, E. R.; Martino, N.; Kandada, A. R. S.; Mosconi, E.; De Angelis, F.; Karunadasa, H. I.; Hoke, E. T.; Petrozza, A., CH3NH3PbI3 Perovskite Single Crystals: Surface Photophysics and Their Interaction with the Environment. Chem. Sci. 2015, 6, 7305-7310.
220. Chen, W.; Shi, Y.; Wang, Y.; Feng, X.; Djurišić, A. B.; Woo, H. Y.; Guo, X.; He, Z., N-Type Conjugated Polymer as Efficient Electron Transport Layer for Planar Inverted Perovskite Solar Cells with Power Conversion Efficiency of 20.86%. Nano Energy 2020, 68, 104363.
221. Hui, W.; Yang, Y.; Xu, Q.; Gu, H.; Feng, S.; Su, Z.; Zhang, M.; Wang, J.; Li, X.; Fang, J., Red‐Carbon‐Quantum‐Dot‐Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2020, 32, 1906374.
222. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341-344.
223. Sutherland, B. R.; Sargent, E. H., Perovskite Photonic Sources. Nat. Photon. 2016, 10, 295.
224. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K., Low Trap-State Density and Long Carrier Diffusion in Organolead Trihalide Perovskite Single Crystals. Science 2015, 347, 519-522.
225. Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687-692.
226. Kim, Y. H.; Cho, H.; Heo, J. H.; Kim, T. S.; Myoung, N.; Lee, C. L.; Im, S. H.; Lee, T. W., Multicolored Organic/Inorganic Hybrid Perovskite Light‐Emitting Diodes. Adv. Mater. 2015, 27, 1248-1254.
227. Adjokatse, S.; Fang, H.-H.; Loi, M. A., Broadly Tunable Metal Halide Perovskites for Solid-State Light-Emission Applications. Mater. Today 2017, 20, 413-424.
228. Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C., Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 Per Cent. Nature 2018, 562, 245-248.
229. Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y., Perovskite Light-Emitting Diodes Based on Spontaneously Formed Submicrometre-Scale Structures. Nature 2018, 562, 249-253.
230. Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Minguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J., Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850-853.
231. Ma, F.; Li, N.; Li, J.; Jia, Z.; Xue, J.; Wang, L.; Qiao, J., Improved Performance of Pure Formamidinium Lead Iodide Perovskite Light-Emitting Diodes by Moisture Treatment. J. Mater. Chem. C 2017, 5, 11121-11127.
232. Zhang, Y.; Wang, Y.; Xu, Z.-Q.; Liu, J.; Song, J.; Xue, Y.; Wang, Z.; Zheng, J.; Jiang, L.; Zheng, C., Reversible Structural Swell–Shrink and Recoverable Optical Properties in Hybrid Inorganic–Organic Perovskite. ACS nano 2016, 10, 7031-7038.
233. Docampo, P.; Bein, T., A Long-Term View on Perovskite Optoelectronics. Acc. Chem. Res. 2016, 49, 339-346.
234. Wang, Z.; Ou, Q.; Zhang, Y.; Zhang, Q.; Hoh, H. Y.; Bao, Q., Degradation of Two-Dimensional CH3NH3PbI3 Perovskite and CH3NH3PbI3/Graphene Heterostructure. ACS Appl. Mater. Interfaces 2018, 10, 24258-24265.
235. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692-3696.
236. Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A., Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence Beyond Traditional Quantum Dots. Angew. Chem. 2015, 127, 15644-15648.
237. Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I., Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science 2017, 358, 745.
238. Cho, H.; Kim, Y. H.; Wolf, C.; Lee, H. D.; Lee, T. W., Improving the Stability of Metal Halide Perovskite Materials and Light‐Emitting Diodes. Adv. Mater. 2018, 30, 1704587.
239. Cha, J.-H.; Han, J. H.; Yin, W.; Park, C.; Park, Y.; Ahn, T. K.; Cho, J. H.; Jung, D.-Y., Photoresponse of CsPbBr3 and Cs4PbBr6 Perovskite Single Crystals. J. Phys. Chem. Lett. 2017, 8, 565-570.
240. Rakita, Y.; Kedem, N.; Gupta, S.; Sadhanala, A.; Kalchenko, V.; Böhm, M. L.; Kulbak, M.; Friend, R. H.; Cahen, D.; Hodes, G., Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization. Cryst. Growth Des. 2016, 16, 5717-5725.
241. Cho, H.; Wolf, C.; Kim, J. S.; Yun, H. J.; Bae, J. S.; Kim, H.; Heo, J. M.; Ahn, S.; Lee, T. W., High‐Efficiency Solution‐Processed Inorganic Metal Halide Perovskite Light‐Emitting Diodes. Adv. Mater. 2017, 29, 1700579.
242. Wu, C.; Zou, Y.; Wu, T.; Ban, M.; Pecunia, V.; Han, Y.; Liu, Q.; Song, T.; Duhm, S.; Sun, B., Improved Performance and Stability of All‐Inorganic Perovskite Light‐Emitting Diodes by Antisolvent Vapor Treatment. Adv. Funct. Mater. 2017, 27, 1700338.
243. Zhang, X.; Wang, W.; Xu, B.; Liu, S.; Dai, H.; Bian, D.; Chen, S.; Wang, K.; Sun, X. W., Thin Film Perovskite Light-Emitting Diode Based on CsPbBr3 Powders and Interfacial Engineering. Nano Energy 2017, 37, 40-45.
244. Wang, Z.; Xu, X.; Gao, L.; Yan, X.; Li, L.; Yu, J., High-Performance Quasi-2D Perovskite Light-Emitting Diodes Via Poly (Vinylpyrrolidone) Treatment. Nanoscale Res. Lett. 2020, 15, 34.
245. Li, B.; Zhang, Y.; Fu, L.; Yu, T.; Zhou, S.; Zhang, L.; Yin, L., Surface Passivation Engineering Strategy to Fully-Inorganic Cubic CsPbI3 Perovskites for High-Performance Solar Cells. Nat. Commun. 2018, 9, 1-8.
246. Yin, J.; Li, H.; Cortecchia, D.; Soci, C.; Bredas, J.-L., Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites. ACS Energy Lett. 2017, 2, 417-423.
247. Yin, J.; Maity, P.; De Bastiani, M.; Dursun, I.; Bakr, O. M.; Brédas, J.-L.; Mohammed, O. F., Molecular Behavior of Zero-Dimensional Perovskites. Sci. Adv. 2017, 3, e1701793.
248. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., Gaussian, Inc., Wallingford Ct. Gaussian 09 2009.
249. Yanai, T.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57.
250. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A., Self‐Consistent Molecular Orbital Methods. Xx. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650-654.
251. Wadt, W. R.; Hay, P. J., Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82, 284-298.
252. Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995-2001.
253. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C‐PCM Solvation Model. J. Comput. Chem. 2003, 24, 669-681.
254. Zhao, C.; Zhang, D.; Qin, C., Perovskite Light-Emitting Diodes. CCS Chemistry 2020, 859-869.
255. Yesudhas, S.; Morrell, M. V.; Anderson, M. J.; Ullrich, C. A.; Kenney-Benson, C.; Xing, Y.; Guha, S., Pressure-Induced Phase Changes in Cesium Lead Bromide Perovskite Nanocrystals with and without Ruddlesden–Popper Faults. Chem. Mater. 2019, 32, 785-794.
256. Liao, M.; Shan, B.; Li, M., In Situ Raman Spectroscopic Studies of Thermal Stability of All-Inorganic Cesium Lead Halide (CsPbX3, X= Cl, Br, I) Perovskite Nanocrystals. J. Phys. Chem. Lett. 2019, 10, 1217-1225.
257. Yang, X.; Gu, H.; Li, S.; Li, J.; Shi, H.; Zhang, J.; Liu, N.; Liao, Z.; Xu, W.; Tan, Y., Improved Photoelectric Performance of All-Inorganic Perovskite through Different Additives for Green Light-Emitting Diodes. RSC Adv. 2019, 9, 34506-34511.
258. Marcus, R. A., Electron Transfer Reactions in Chemistry. Theory and Experiment. Rev. Mod. Phys. 1993, 65, 599-610.
259. Marcus, R. A.; Sutin, N., Electron Transfers in Chemistry and Biology. Biochim. Biophys. Acta-Reviews on Bioenergetics 1985, 811, 265-322.
260. Qiu, J.; McDowell, L. L.; Shi, Z., Room-Temperature Cubic Perovskite Thin Films by Three-Step All-Vapor Conversion from Pbse to MAPbI3. Cryst. Growth Des. 2019, 19, 2001-2009.
261. Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J., Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-State Sensitised Solar Cell Applications. J. Mater. Chem. A 2013, 1, 5628-5641.

QR CODE