簡易檢索 / 詳目顯示

研究生: 郭振偉
Chen-Wei Kuo
論文名稱: 以無陽極鋰金屬電池架構開發低溫用雙鋰鹽與酯基電解液
Development of low-temperature dual-lithium salt and ester-based electrolytes based on an anode free lithium metal battery configuration
指導教授: 吳溪煌
She-Huang Wu
黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
姚松廷
Song-Ting Yao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 150
中文關鍵詞: 無陽極鋰金屬電池低溫電解液酯基有機溶劑雙鋰鹽系統局部高濃度電解液
外文關鍵詞: anode-free lithium metal battery, cryogenic temperature electrolyte, ester-based organic solvent, dual-lithium salt system, localized high concentration electrolyte
相關次數: 點閱:300下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,鋰離子電池的蓬勃發展使其被應用在多種領域,也因此面臨了許多挑戰,而其中一個挑戰便是如何使鋰離子電池在低溫下保有良好的效能。在低溫中,鋰離子電池將會面臨許多挑戰,如離子傳導能力減弱,導離度下降、電解液黏度升高、鋰枝晶生長不平整等問題。因此本研究利用無陽極鋰金屬電池來做為快速評判電解液的方法,並透過減少EC的體積比例來改善其高黏度的問題,並添加酯基有機溶劑來改善導離度與黏度問題,接著再更進一步的優化電解的配方,來得到更佳的電化學效能。得1M LiPF6 FEC/TTE /EMC/MA (1:5:2:2) 能在室溫下循環20圈後仍有62.08%的電容保持率,並在低溫中循環10圈後具有68.79%的電容保持率,相較於商用電解液1M LiPF6 EC/EMC (5:5) 在低溫中的效能,10圈後27.09%的電容保持率有著大幅得提升。
但在實驗過程中,觀察到此款電解液有儲放的問題,因此將鹽類改用LiTFSI,成功改善儲放問題,並利用其特性配置成局部高濃度電解液,接著為了改善鋁箔腐蝕的問題添加具有正極保護性並且能夠提升電解液導離度和形成穩定SEI層的LiPO2F2來形成雙鋰鹽系統,最後得出的電解液1.3M LiTFSI+0.1M LPF在室溫下循環20圈具有53.82%的電容量保持率,而在低溫中循環10圈後仍保有51.77%的電容量保持率。雖然不及原本使用LiPF6的電解液,但在改善儲放問題的同時,其表現仍優於商用電解液,算是成功將局部高濃度雙鋰鹽系統電解液成功應用於低溫中。


The development of lithium-ion batteries has applied in various fields in recently years. However, how to enhance the performance of lithium-ion batteries at cryogenic temperature is one of the issues to be solved. Lithium-ion batteries still suffer from several barriers, such as low ionic conductivity, high viscosity, and Li dendrite growth.
In this work, we use the anode free lithium metal battery as the protocol of the evaluation standard. By changing the solvent volume ratio and adding ester-based organic solvent to improve the high viscosity problem and enhance the ionic conductivity. Then optimize the electrolyte and change the formula of the electrolyte to gain better electrochemical performance. We present the optimized electrolyte 1M LiPF6 FEC/TTE/EMC/MA (1:5:2:2) which capacity retention remain 62.08% for 20 cycles at the ambient temperature. Compared to the commercial electrolyte at cryogenic conditions, optimized electrolyte has higher capacity retention (68.79%) for 10 cycles.
By replacing the lithium salt to LiTFSI that could alleviate the unstable preservation of the electrolyte in the experimental procedure. Moreover, Adding LiPO2F2(LPF) as the dual-salt system. LPF could protect cathode material, improve the conductivity of electrolyte and form a stable SEI layer. In dual-salt system, the electrolyte 1.3M LiTFSI + 0.1M LPF has the best performance, the capacity retention could remain 53.82% for 20 cycles at ambient temperature and 51.77% for 10 cycles at cryogenic temperature. From the above electrochemical performance, we successfully established the localization high concentration dual-salt system in cryogenic temperature.

摘要 III Abstract V 致謝 VII 目錄 XI 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 1-1前言 1 1-2 鋰離子電池的運作與反應機制 3 1-3無陽極鋰金屬電池 5 1-4 電解液 8 1-4-1溶劑 9 1-4-2 鋰鹽 10 第二章 文獻回顧 13 2-1 電解液面臨的問題 13 2-1-1 低溫下的挑戰 14 2-1-2 使用酯基有機溶劑改善低溫效能 16 2-1-3 其他溶劑之特性 20 2-2 各種鋰鹽的特性 24 2-2-1 LiPF6 – 六氟磷酸锂 24 2-2-2 LiTFSI (Li[N(CF3SO2)2]) - 雙(三氟甲基磺酰)氨基锂 25 2-3局部高濃度電解液 27 2-3-1 高濃度電解液 27 2-3-2 局部高濃度電解液 28 2-4雙鋰鹽系統 32 2-5 研究動機與目的 36 第三章 實驗方法與實驗儀器 41 3-1 實驗儀器及藥品 41 3-1-1 實驗儀器 41 3-1-2 藥品 42 3-2 實驗步驟 44 3-2-1 電解液的配製 44 3-2-2 無陽極鋰金屬電池負極(銅箔)的製備 48 3-2-3 鈕扣型電池的組裝 49 3-3 材料鑑定與分析 51 3-3-1 場發射掃描式電子顯微鏡(FE-SEM) 51 3-3-2 拉曼光譜儀(RAMAN) 54 3-3-3 X射線光電子光譜(X-ray photon spectrum) 55 3-4 電化學測試與計算 56 3-4-1 電池效能的測定 56 3-4-2 交流阻抗分析 59 3-4-3 氧化電位之分析 60 第四章 結果與討論 63 4-1 利用加入酯基溶劑改善低溫 (0 oC) 特性 63 4-1-1 探討不同EC與EMC比例在低溫下的電化學表現 64 4-1-2 利用加入乙酸乙酯改善低溫特性 72 4-1-3 利用加入乙酸甲酯改善室溫與低溫表現 79 4-2 置換鋰鹽與雙鋰鹽系統 92 4-2-1 利用LiTFSI配置高濃度電解液 93 4-2-2 LiTFSI與LiPO2F2之雙鋰鹽系統 99 第五章 結論 123 第六章 未來展望 125 第七章 參考資料 127

1. Whittingham, M. S., Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-1127.
2. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
3. Beyene, T. T.; Bezabh, H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J., Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries. Journal of The Electrochemical Society 2019, 166 (8), A1501.
4. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104 (10), 4303-4418.
5. Henderson, W. A., Glyme− lithium salt phase behavior. The Journal of Physical Chemistry B 2006, 110 (26), 13177-13183.
6. Piao, N.; Gao, X.; Yang, H.; Guo, Z.; Hu, G.; Cheng, H.-M.; Li, F., Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 2022, 11, 100145.
7. Ji, Y.; Zhang, Y.; Wang, C.-Y., Li-ion cell operation at low temperatures. Journal of The Electrochemical Society 2013, 160 (4), A636.
8. Li, Q.; Liu, G.; Cheng, H.; Sun, Q.; Zhang, J.; Ming, J., Low‐Temperature Electrolyte Design for Lithium‐Ion Batteries: Prospect and Challenges. Chemistry–A European Journal 2021, 27 (64), 15842-15865.
9. Zhang, S.; Xu, K.; Jow, T., Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica acta 2004, 49 (7), 1057-1061.
10. Smart, M.; Whitacre, J.; Ratnakumar, B.; Amine, K., Electrochemical performance and kinetics of Li1+ x (Co1/3Ni1/3Mn1/3) 1− xO2 cathodes and graphite anodes in low-temperature electrolytes. Journal of power sources 2007, 168 (2), 501-508.
11. Smart, M.; Ratnakumar, B.; Surampudi, S., Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance. Journal of the Electrochemical Society 2002, 149 (4), A361.
12. Kim, N.; Myung, Y.; Kang, H.; Lee, J.-W.; Yang, M., Effects of methyl acetate as a co-solvent in carbonate-based electrolytes for improved lithium metal batteries. ACS applied materials & interfaces 2019, 11 (37), 33844-33849.
13. Brown, Z. L.; Jurng, S.; Nguyen, C. C.; Lucht, B. L., Effect of fluoroethylene carbonate electrolytes on the nanostructure of the solid electrolyte interphase and performance of lithium metal anodes. ACS Applied Energy Materials 2018, 1 (7), 3057-3062.
14. Younesi, R.; Veith, G. M.; Johansson, P.; Edström, K.; Vegge, T., Lithium salts for advanced lithium batteries: Li–metal, Li–O 2, and Li–S. Energy & Environmental Science 2015, 8 (7), 1905-1922.
15. Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H. K., Lithium‐ion conducting electrolyte salts for lithium batteries. Chemistry–A European Journal 2011, 17 (51), 14326-14346.
16. Walker, C. W.; Cox, J. D.; Salomon, M., Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris (trifluoromethanesulfonyl) methide. Journal of the Electrochemical Society 1996, 143 (4), L80.
17. Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K., Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. Journal of power sources 2013, 231, 234-238.
18. Zhang, X.; Devine, T., Factors that influence formation of AlF3 passive film on aluminum in Li-ion battery electrolytes with LiPF6. Journal of The Electrochemical Society 2006, 153 (9), B375.
19. Hou, T.; Fong, K. D.; Wang, J.; Persson, K. A., The solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries. Chemical science 2021, 12 (44), 14740-14751.
20. Hall, D. S.; Self, J.; Dahn, J., Dielectric constants for quantum chemistry and Li-ion batteries: solvent blends of ethylene carbonate and ethyl methyl carbonate. The Journal of Physical Chemistry C 2015, 119 (39), 22322-22330.
21. Seo, D. M.; Reininger, S.; Kutcher, M.; Redmond, K.; Euler, W. B.; Lucht, B. L., Role of mixed solvation and ion pairing in the solution structure of lithium ion battery electrolytes. The Journal of Physical Chemistry C 2015, 119 (25), 14038-14046.
22. Perez Beltran, S.; Cao, X.; Zhang, J.-G.; Balbuena, P. B., Localized high concentration electrolytes for high voltage lithium–metal batteries: correlation between the electrolyte composition and its reductive/oxidative stability. Chemistry of Materials 2020, 32 (14), 5973-5984.
23. Self, J.; Fong, K. D.; Persson, K. A., Transport in superconcentrated LiPF6 and LiBF4/propylene carbonate electrolytes. ACS Energy Letters 2019, 4 (12), 2843-2849.
24. Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A., Advances and issues in developing salt-concentrated battery electrolytes. Nature Energy 2019, 4 (4), 269-280.
25. Fan, X.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J.; Xu, K., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4 (1), 174-185.
26. Liu, L.; Gu, S.; Wang, S.; Zhang, X.; Chen, S., A LiPO 2 F 2/LiPF 6 dual-salt electrolyte enabled stable cycling performance of nickel-rich lithium ion batteries. RSC advances 2020, 10 (3), 1704-1710.
27. Yoo, D.-J.; Liu, Q.; Cohen, O.; Kim, M.; Persson, K. A.; Zhang, Z., Understanding the Role of SEI Layer in Low-Temperature Performance of Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14 (9), 11910-11918.
28. 中國物體技術網, 掃描電子顯微鏡SEM_從基礎出發,一切盡在掌控中. 2016.
29. 圓的方塊, 盧. 獻給被電化學阻抗譜(EIS)困擾的你. https://kknews.cc/zh-mo/science/vza5ony.html.
30. Linear Sweep and Cyclic Voltametry: The Principles. https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/linear-sweep-and-cyclic-voltametry-the-principles.
31. Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S.-C., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature nanotechnology 2018, 13 (8), 715-722.
32. Lin, S.; Hua, H.; Lai, P.; Zhao, J., A Multifunctional Dual‐Salt Localized High‐Concentration Electrolyte for Fast Dynamic High‐Voltage Lithium Battery in Wide Temperature Range. Advanced Energy Materials 2021, 11 (36), 2101775.
33. Hagos, T. M.; Bezabh, H. K.; Redda, H. G.; Moges, E. A.; Huang, W.-H.; Huang, C.-J.; Su, W.-N.; Dai, H.; Hwang, B. J., Exploring the performance of carbonate and ether-based electrolytes for anode-free lithium metal batteries operating under various conditions. Journal of Power Sources 2021, 512, 230388.

無法下載圖示 全文公開日期 2027/08/24 (校內網路)
全文公開日期 2027/08/24 (校外網路)
全文公開日期 2027/08/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE