簡易檢索 / 詳目顯示

研究生: 蔡程宇
Cheng-Yu Cai
論文名稱: 交錯式Vienna整流器之循環電流抑制與電容電壓平衡控制
Circulating Current Suppression and Capacitor Voltage Balance for Interleaved Vienna Rectifier
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 林建宇
林景源
邱煌仁
Huang-Jen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 交錯式並聯系統Vienna整流器循環電流電容電壓平衡零序控制
外文關鍵詞: Interleaved parallel system, Vienna rectifier, Circulating current, Capacitor voltage balance, Zero-sequence control
相關次數: 點閱:628下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應負載需求日益增加,整流器的系統容量逐漸增加,要在有限的空間提高功率並達到高功率因數(Power Factor, PF)以及低諧波失真(Total Harmonic Distortion, THD)。並聯是提高系統容量常見的方式,但並聯會使整流器之間形成路徑進而產生循環電流降低系統效率,因此本文將著重分析循環電流模型。本文選用三線三臂之Vienna整流器,以交錯式控制降低總輸入電流之漣波及總諧波失真。調變法選用具有低總諧波失真、控制簡易之空間向量脈波寬度調變(Space Vector Pulse Width Modulation, SVPWM),透過零序控制抑制循環電流與電容電壓平衡。文末以電路模擬軟體PSIM建立兩組總功率為20 kW之Vienna整流器並模擬。


    As power demand increases, system capacity of rectifier is gradually increased. And it has to achieve high power factor (PF) and low total harmonic distortion (THD) with limit volume. Paralleling the rectifier can improve the system capacity, but paralleling will create the paths between the rectifiers. Because the paths generate the circulating current to reduce system efficiency, this thesis will analysis circulating current model and propose the control method. This thesis chooses the three-legs Vienna rectifier and uses interleaved control to decrease the input current ripple and THD. By applying SVPWM, the input current of rectifier has low THD. And using zero sequence control to suppressing circulating current and balancing capacitor voltage. Finally, the two sets of Vienna rectifier with total power of 20kW are built with circuit simulation software PSIM.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖索引 vi 表索引 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 章節大綱 3 第二章 三相功率因數修正器 4 2.1 功率因數與總諧波失真 4 2.2 三相整流器拓樸 5 2.2.1 三相單開關升壓型整流器 6 2.2.2 三相三開關雙組升壓型整流器 6 2.2.3 三相六開關升壓型整流器 7 2.2.4 Vienna整流器 8 2.3 Vienna整流器動作原理 8 2.4 Vienna整流器小訊號分析與座標轉換 14 2.4.1 三相靜止座標下的數學模型 14 2.4.2 同步旋轉座標下的數學模型 18 2.4.3 小訊號模型 20 2.4.4 前饋解耦雙閉環控制 22 第三章 調變技術介紹 25 3.1 正弦脈波寬度調變 25 3.2 空間向量脈波寬度調變 26 3.2.1 空間向量的分類 26 3.2.2 SVPWM的開關切換時序 28 3.2.3 向量區間判斷與向量合成 29 3.3 零序注入之正弦脈波寬度調變 31 第四章 循環電流與電容電壓平衡 35 4.1 循環電流分析與控制策略 35 4.1.1 電感參數相同下循環電流模型分析 36 4.1.2 電感參數相同下循環電流之控制策略 38 4.1.3 電感參數不相同下循環電流模型分析 43 4.1.4 電感參數不相同下循環電流之控制策略 45 4.2 電容電壓平衡分析與控制策略 47 4.3 系統的控制 49 第五章 電路模擬結果 52 5.1 電感參數相同下循環電流控制模擬 52 5.2 電容電壓平衡控制模擬 53 5.3 電感參數不相同下循環電流控制模擬 54 5.4 電流參數的比較 55 第六章 結論與未來展望 58 6.1 結論 58 6.2 未來展望 58 參考文獻 59

    [1] 經濟部能源局能源轉型白皮書,2020年。檢自https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=13178&sub_menu_id=13180 (Nov.1, 2022)
    [2] Yungtaek Jang and M. M. Jovanovic, "A new input-voltage feedforward harmonic-injection technique with nonlinear gain control for single-switch, three-phase, DCM boost rectifiers," in IEEE Transactions on Power Electronics, vol. 15, no. 2, pp. 268-277, March 2000.
    [3] Chongming Qiao and K. M. Smedley, "A general three-phase PFC controller for rectifiers with a parallel-connected dual boost topology," in IEEE Transactions on Power Electronics, vol. 17, no. 6, pp. 925-934, Nov. 2002.
    [4] E. F. de Oliveira, S. V. Araujo, B. Dombert and P. Zacharias, “Comparative evaluation of three-phase PFC rectifiers for mains interfacing of on-board electric vehicle battery charging systems,” IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pp. 1-6, Nov. 2015.
    [5] J. Hu, W. Xiao, B. Zhang, D. Qiu and C. N. M. Ho, “A Single Phase Hybrid Interleaved Parallel Boost PFC Converter,” 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2855-2859, Sep. 2018.
    [6] R. Chen, F. Wang, L. M. Tolbert, D. J. Costinett and B. B. Choi, "Current Jump Mechanism and Suppression in Paralleled Three-level Inverters with Space Vector Modulation," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), 2020, pp. 3074-3080.
    [7] Z. Shao, X. Zhang, F. Wang and R. Cao, "Modeling and Elimination of Zero-Sequence Circulating Currents in Parallel Three-Level T-Type Grid-Connected Inverters," in IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 1050-1063, Feb. 2015.
    [8] B. Zhang, X. Han, C. Ren, D. Zhang, L. Wang and T. Song, "A circulating current suppression method with adaptive virtual impedance for multi-bidirectional power converters under unbalanced conditions," in CSEE Journal of Power and Energy Systems.
    [9] X. Wang et al., "A Novel Model Predictive Control Strategy to Eliminate Zero-Sequence Circulating Current in Paralleled Three-Level Inverters," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 309-320, March 2019.
    [10] Z. Liang, X. Lin, X. Qiao, Y. Kang and B. Gao, "A Coordinated Strategy Providing Zero-Sequence Circulating Current Suppression and Neutral-Point Potential Balancing in Two Parallel Three-Level Converters," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, pp. 363-376, March 2018.
    [11] Z. Liang, X. Lin, X. Qiao, Y. Kang and B. Gao, "A Coordinated Strategy Providing Zero-Sequence Circulating Current Suppression and Neutral-Point Potential Balancing in Two Parallel Three-Level Converters," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, pp. 363-376, March 2018.
    [12] X. Liu, T. Liu, A. Chen, X. Xing and C. Zhang, "Suppression of Circulating Currents for Paralleled Three-Level T-Type Inverters Under Unbalanced Operating Conditions," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), 2020, pp. 3003-3007.
    [13] C. Qin, C. Zhang, A. Chen, X. Xing and G. Zhang, "Circulating Current Suppression for Parallel Three-Level Inverters Under Unbalanced Operating Conditions," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 480-492, March 2019.
    [14] X. Li et al., "A Generalized Design Framework for Neutral Point Voltage Balance of Three-Phase Vienna Rectifiers," in IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 10221-10232, Oct. 2019.
    [15] J. Zhou, J. O. Ojo, F. Tang, J. Haruna and P. C. Loh, "A Carrier-Based Discontinuous PWM for Single and Parallel Three-Level T-Type Converters With Neutral-Point Potential Balancing," in IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 5117-5127, Sept.-Oct. 2021.
    [16] S. Srivastava and M. A. Chaudhari, “Comparison of SVPWM and SPWM Schemes for NPC Multilevel Inverter,” 2020 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1-6, Feb. 2020.
    [17] Z. Zhao, "An Optimized Three-Phase Three-Level SVPWM Modulation Algorithm," 2016 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), 2016, pp. 345-350.
    [18] Jang-Hwan Kim and S. -K. Sul, "A carrier-based PWM method for three-phase four-leg voltage source converters," in IEEE Transactions on Power Electronics, vol. 19, no. 1, pp. 66-75, Jan. 2004.
    [19] Ned Mohan, Tore M. Undeland & William P. Robbins, Power Electronics: Converters, Applications, and Design Third Edition. USA:Wiley, 2002, pp.41.
    [20] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang and D. Zhang, "Average Modeling and Control Design for VIENNA-Type Rectifiers Considering the DC-Link Voltage Balance," in IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2509-2522, Nov. 2009.
    [21] D. N. Zmood, D. G. Holmes and G. Bode, "Frequency domain analysis of three phase linear current regulators," Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), 1999, pp. 818-825.

    QR CODE