簡易檢索 / 詳目顯示

研究生: 黃秋萍
Chiu-Ping Huang
論文名稱: 高活性非鉑觸媒膜電極組於鹼性膜燃料電池之研究
Highly active Pt-free catalysts membrane electrode assembly in Alkaline Exchange Membrane Fuel Cells
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 杜景順
Jing-Shan Do
蔡麗端
Li-Duan Tsai
葛明德
Ming-Der Ger
王丞浩
Chen-Hao Wang
蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 161
中文關鍵詞: 鹼性膜燃料電池氫氣氧化反應氧還原反應膜電極組
外文關鍵詞: Alkaline Exchange Membrane Fuel Cells, Hydrogen Oxidation Reaction, Oxygen Reduction Reaction, Membrane Electrode Assembly
相關次數: 點閱:446下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

膜電極組中的貴金屬鉑觸媒是造成燃料電池材料成本過高的主因,本文致力於高活性鹼性Ni系非鉑觸媒的開發,包含陽極的NiRu/C及陰極的PdNNi非鉑觸媒,以修飾Watanabe法所製備兼具高氫氣氧化反應活性的NiRu/C非鉑陽極觸媒,電子效應及協同效應促使活性接近商業化鉑系觸媒,且具生產製程簡易且具可放大性的優點。另以濺鍍技術開發高氧還原反應活性的PdNNi非鉑陰極觸媒,電子轉移協同效應提升活性接近Pt觸媒,高活性非鉑觸媒在成本及性能上深具潛力,有機會取代高價及蘊藏量有限的鉑系觸媒。
另一研發重點為將非鉑鹼性觸媒導入膜電極組結構,NiRu/C非鉑陽極觸媒膜電極組之最大放電功率634 mW/cm2 (H2/O2),是鉑觸媒性能的60%;非鉑觸媒膜電極組最大放電功率僅239 mW/cm2 (H2/O2),因NiRu/C在高電流時出現的鈍化,造成氫氣氧化反應活性降低,導致膜電極組的放電性能無法繼續往上提升。PdNNi非鉑陰極觸媒之膜電極組之最大放電功率達1673 mW/cm2 (H2/O2),是商業化鉑系觸媒膜電極組性能的1.66倍,膜電極組的傳質阻力降低及電子轉移協同效應促使PdNNi非鉑觸媒膜電極組展現出優異的放電性能。


The noble metal platinum catalyst in the membrane electrode assembly (MEA) is the main cause of the high cost of the fuel cell. The focus of this paper is on the development of highly-active nickel-based Pt-free catalysts, including NiRu/C of anode and PdNNi of cathode for anion exchange membrane fuel cells (AEMFC). The NiRu/C anode catalyst prepared by the modified Watanabe method shows high hydrogen oxidation reaction (HOR) activity and outstanding durability. The HOR activity close to the commercial Pt catalyst results from the electronic effect and synergistic effect. Meanwhile, the production process is simple and can be scaled up. The PdNNi cathode catalyst prepared by sputtering deposition show high oxygen reduction reaction (ORR) activity. The electronic effect enhances the ORR activity close to Pt catalyst. The highly active Pt-free catalysts of NiRu/C and PdNNi have great advantages in cost and performance and show great potential to replace Pt-based catalysts.
Another research focus is to introduce the developed Pt-free catalyst into a membrane electrode assembly. The maximum power density of the NiRu/C anode catalyst membrane electrode assembly is 634 mW/cm2 (H2/O2), which is 60% of the performance of the Pt-catalyst based membrane electrode assembly. The performance of the Pt free catalyst based MEA is not as expected and the maximum power density is only 239 mW/cm2 (H2/O2). Since NiRu/C is passivated at a high current density, which decreases the HOR activity at high overpotential and, results in less improvement in performance of the membrane electrode assembly. The maximum power density of the PdNNi cathode catalyst membrane electrode assembly is as high as 1673 mW/cm2 (H2/O2), which is 1.66 times of the performance of the commercial Pt-based membrane electrode assembly. It can be concluded that reduced mass transfer resistance and electron transfer synergistically contributed to the improved performance of PdNNi cathode electrode.

摘要 I Abstract II 致謝 III 目錄 VI 圖目錄 IX 表目錄 XVI 符號索引 XVII 第一章 緒論 1 1.1 前言 1 1.2 燃料電池 2 1.3 燃料電池發展與現況 3 1.4 研究動機與目的 7 第二章 文獻回顧 10 2.1 鹼性膜燃料電池 10 2.2 非鉑陽極觸媒 13 2.3 非鉑陰極觸媒 20 2.4 非鉑觸媒設計策略 26 2.4.1 非鉑陽極觸媒 26 2.4.2 非鉑陰極觸媒 27 第三章 實驗設備與方法 29 3.1 實驗/分析設備 29 3.2 實驗藥品 30 3.3 觸媒電極與膜電極組製備 31 3.3.1 非鉑陽極觸媒 31 3.3.2 非鉑陽極觸媒電極 36 3.3.3 鉑系陽極觸媒電極 37 3.3.4 非鉑陰極觸媒/電極 37 3.3.5 鉑系陰極觸媒電極 39 3.3.6 電化學分析觸媒漿料 40 3.3.7 膜電極組組裝 40 3.4 材料鑑定與分析 41 3.4.1 X射線繞射(XRD) 41 3.4.2 感應偶合電漿光譜(ICP-AES) 41 3.4.3 X射線光電子能譜(XPS) 42 3.4.4 場發射顯微鏡(FE-SEM) 42 3.4.5 掃描穿透式電子顯微鏡(STEM) 43 3.4.6 理論計算(DFT) 44 3.4.7 X射線吸收光譜(XAS) 46 3.4.8 電化學分析 57 3.4.9 膜電極組測試 65 第四章 結果與討論 67 4.1 高活性NiRu/C非鉑陽極觸媒 67 4.1.1 NiRu/C觸媒之晶體結構特徵鑑定 68 4.1.2 NiRu/C觸媒之組成分析 69 4.1.3 NiRu/C觸媒之粒徑分佈 70 4.1.4 NiRu/C觸媒之原子結構鑑定 74 4.1.5 NiRu/C觸媒之電化學特性分析 82 4.1.6 NiRu/C觸媒之電子效應 87 4.1.7 NiRu/C觸媒之協同效應 98 4.1.8 NiRu/C觸媒製程簡化及綠化 100 4.1.9 不同合成方法NiRu/C觸媒之晶體結構特徵鑑定 102 4.1.10 不同合成方法NiRu/C觸媒之粒徑分佈 104 4.1.11 不同合成方法NiRu/C觸媒之電化學特性 108 4.1.12 放大規模生產的觸媒之電化學特性 114 4.1.13 放大規模生產的觸媒之粒徑分佈及元素分佈 118 4.1.14 小結 120 4.2 高活性PdNNi非鉑陰極觸媒 122 4.2.1 PdNNi觸媒之晶體結構特徵鑑定 123 4.2.2 PdNNi觸媒之原子結構鑑定 125 4.2.3 PdNNi觸媒之表面輪廓 127 4.2.4 PdNNi觸媒之電化學特性 130 4.2.5 PdNNi觸媒之電子結構 132 4.2.6 PdNNi觸媒之理論計算 136 4.2.7 小結 138 4.3 非鉑觸媒膜電極組 139 4.3.1 非鉑陽極觸媒膜電極組之性能 139 4.3.2 非鉑陰極觸媒膜電極組之性能 145 4.3.3 非鉑觸媒膜電極組之性能 151 4.3.4 小結 153 第五章 結論 154 第六章 未來展望 155 第七章 參考文獻 156

1.David Hart, F. L., Stuart Jones, Jonathan Lewis, Matthew Klippenstein, The Fuel Cell Industry Review 2018. E4tech 2018, 49.
2.Papageorgopoulos, D., Fuel Cell R&D Overview. 2019 Annual Merit Review and Peer Evaluation Meeting 2019, 33.
3.Durst, J.; Simon, C.; Siebel, A.; Rheinländer, P. J.; Schuler, T.; Hanzlik, M.; Herranz, J.; Hasché, F.; Gasteiger, H. A., Hydrogen Oxidation and Evolution Reaction (HOR/HER) on Pt Electrodes in Acid vs. Alkaline Electrolytes: Mechanism, Activity and Particle Size Effects. ECS Transactions 2014, 64 1069-1080.
4.Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science 2014, 7, 2255-2260.
5.Wang, Y.; Wang, G.; Li, G.; Huang, B.; Pan, J.; Liu, Q.; Han, J.; Xiao, L.; Lu, J.; Zhuang, L., Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy & Environmental Science 2015, 8, 177-181.
6.Scofield, M. E.; Zhou, Y.; Yue, S.; Wang, L.; Su, D.; Tong, X.; Vukmirovic, M. B.; Adzic, R. R.; Wong, S. S., Role of Chemical Composition in the Enhanced Catalytic Activity of Pt-Based Alloyed Ultrathin Nanowires for the Hydrogen Oxidation Reaction under Alkaline Conditions. ACS Catalysis 2016, 6, 3895-3908.
7.Lu, S.; Zhuang, Z., Investigating the Influences of the Adsorbed Species on Catalytic Activity for Hydrogen Oxidation Reaction in Alkaline Electrolyte. Journal of the American Chemical Society 2017, 139, 5156-5163.
8.Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature Chemistry 2013, 5, 300.
9.Zheng, J.; Sheng, W.; Zhuang, Z.; Xu, B.; Yan, Y., Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Science Advances 2016, 2, e1501602-e1501602.
10.Ohyama, J.; Sato, T.; Yamamoto, Y.; Arai, S.; Satsuma, A., Size Specifically High Activity of Ru Nanoparticles for Hydrogen Oxidation Reaction in Alkaline Electrolyte. Journal of the American Chemical Society 2013, 135, 8016-8021.
11.Alesker, M.; Page, M.; Shviro, M.; Paska, Y.; Gershinsky, G.; Dekel, D. R.; Zitoun, D., Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell. Journal of Power Sources 2016, 304, 332-339.
12.Miller, H. A.; Lavacchi, A.; Vizza, F.; Marelli, M.; Di Benedetto, F.; D'Acapito, F.; Paska, Y.; Page, M.; Dekel, D. R., A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells. Angewandte Chemie International Edition 2016, 55, 6004-6007.
13.Miller, H. A.; Vizza, F.; Marelli, M.; Zadick, A.; Dubau, L.; Chatenet, M.; Geiger, S.; Cherevko, S.; Doan, H.; Pavlicek, R. K.; Mukerjee, S.; Dekel, D. R., Highly active nanostructured palladium-ceria electrocatalysts for the hydrogen oxidation reaction in alkaline medium. Nano Energy 2017, 33, 293-305.
14.Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B 2004, 108, 17886-17892.
15.Jakšić, J. M.; Krstajić, N. V.; Grgur, B. N.; Jakšić, M. M., Hydridic and electrocatalytic properties of hypo-hyper-d-electronic combinations of transition metal intermetallic phases. International Journal of Hydrogen Energy 1998, 23, 667-681.
16.Brewer, L., Bonding and Structures of Transition Metals. Science 1968, 161, 115 LP - 122.
17.Jakšić, M. M., Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory. Journal of Molecular Catalysis 1986, 38, 161-202.
18.Jakšić, M. M., Brewer intermetallic phases as synergetic electrocatalysts for hydrogen evolution. Materials Chemistry and Physics 1989, 22, 1-26.
19.Paunovic, P.; Popovski, O.; Stoevska Gogovska, D.; Lefterova, E.; Slavcheva, E.; Dimitrov, A.; Lefterova, E.; Slavcheva, E.; J Chem, M., Electrocatalytic activity of hypo–hyper-d- electrocatalysts (Me/TiO2 /MWCNTs) based on Co-Ru in alkaline hydrogen electrolyser. Macedonian Journal of Chemistry and Chemical Engineering 2011, 30653, 55-65544.
20.Xu, Y.; Ruban, A.; Mavrikakis, M., Adsorption and Dissociation of O2 on Pt−Co and Pt−Fe Alloys. Journal of the American Chemical Society 2004, 126, 4717-4725.
21.Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G., Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. The Journal of Chemical Physics 2004, 120, 10240-10246.
22.Jensen, K. D.; Tymoczko, J.; Rossmeisl, J.; Bandarenka, A. S.; Chorkendorff, I.; Escudero-Escribano, M.; Stephens, I. E. L., Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie International Edition 2018, 57, 2800-2805.
23.Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M., Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co. Journal of The Electrochemical Society 1999, 146 3750-3756.
24.Todoroki, N.; Iijima, Y.; Takahashi, R.; Asakimori, Y.; Wadayama, T., Structure and Electrochemical Stability of Pt-Enriched Ni/Pt(111) Topmost Surface Prepared by Molecular Beam Epitaxy. Journal of The Electrochemical Society 2013, 160 F591-F596.
25.Chen, J. G., Carbide and Nitride Overlayers on Early Transition Metal Surfaces:  Preparation, Characterization, and Reactivities. Chemical Reviews 1996, 96, 1477-1498.
26.Dong, S.; Chen, X.; Zhang, X.; Cui, G., Nanostructured transition metal nitrides for energy storage and fuel cells. Coordination Chemistry Reviews 2013, 257, 1946-1956.
27.Giordano, C.; Antonietti, M., Synthesis of crystalline metal nitride and metal carbide nanostructures by sol–gel chemistry. Nano Today 2011, 6, 366-380.
28.Komiya, S.; Tsuruoka, K., Physical vapor deposition of thick Cr and its carbide and nitride films by hollow‐cathode discharge. Journal of Vacuum Science and Technology 1976, 13, 520-524.
29.Hirai, T.; Sasaki, M., Vapor - Deposited Functionally Gradient Materials. JSME international journal. Ser. 1, Solid mechanics, strength of materials 1991, 34, 123-129.
30.Andrievski, R. A., Films of interstitial phases: synthesis and properties. Journal of Materials Science 1997, 32 (17), 4463-4484.
31.Petrov, S. V., Plasma synthesis in the technology of gasothermic spraying. Powder Metallurgy and Metal Ceramics 1997, 36 (9), 483-486.
32.Vissokov, G.; Grancharov, I.; Tsvetanov, T., On the plasma-chemical synthesis of nanopowders. Plasma Science and Technology 2003, 5 (6), 2039.
33.Schaaf, P.; Kahle, M.; Carpene, E., Reactive laser synthesis of carbides and nitrides. Applied surface science 2005, 247 (1-4), 607-615.
34.Veith, G. M.; Lupini, A. R.; Baggetto, L.; Browning, J. F.; Keum, J. K.; Villa, A.; Prati, L.; Papandrew, A. B.; Goenaga, G. A.; Mullins, D. R., Evidence for the formation of nitrogen-rich platinum and palladium nitride nanoparticles. Chemistry of Materials 2013, 25 (24), 4936-4945.
35.Vaughn II, D. D.; Araujo, J.; Meduri, P.; Callejas, J. F.; Hickner, M. A.; Schaak, R. E., Solution synthesis of Cu3PdN nanocrystals as ternary metal nitride electrocatalysts for the oxygen reduction reaction. Chemistry of Materials 2014, 26 (21), 6226-6232.
36.Chandran, P.; Ghosh, A.; Ramaprabhu, S., High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell. Scientific reports 2018, 8 (1), 3591.
37.Jin, Z.; Li, P.; Xiao, D., Enhanced electrocatalytic performance for oxygen reduction via active interfaces of layer-by-layered titanium nitride/titanium carbonitride structures. Scientific reports 2014, 4, 6712.
38.Watanabe, M.; Uchida, M.; Motoo, S., Preparation of highly dispersed Pt+ Ru alloy clusters and the activity for the electrooxidation of methanol. Journal of electroanalytical chemistry and interfacial electrochemistry 1987, 229 (1-2), 395-406.
39.Lai, F.-J.; Sarma, L. S.; Chou, H.-L.; Liu, D.-G.; Hsieh, C.-A.; Lee, J.-F.; Hwang, B.-J., Architecture of Bimetallic Pt x Co1− x Electrocatalysts for Oxygen Reduction Reaction As Investigated by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2009, 113 (29), 12674-12681.
40.Tripkovic, V.; Hansen, H. A.; Rossmeisl, J.; Vegge, T., First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction. Physical Chemistry Chemical Physics 2015, 17 (17), 11647-11657.
41.Steinbach, A. J.; Duru, C.; Haug, A. T.; Hester, A. E.; Kuznia, M.; Lewinski, K. A.; Luopa, S. M.; Petrin, J. T.; Thoma, G. M.; Kropf, A. J., Ultrathin Film NSTF ORR Electrocatalysts for PEM Fuel Cells. ECS Transactions 2017, 80 (8), 659-676.
42.Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Physical Review B 1993, 47 (1), 558.
43.Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 1996, 54 (16), 11169.
44.Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science 1996, 6 (1), 15-50.
45.Blöchl, P. E., Projector augmented-wave method. Physical review B 1994, 50 (24), 17953.
46.Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758.
47.Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical review letters 1996, 77 (18), 3865.
48.Paiva, R. d.; Nogueira, R.; Alves, J., Calculations of the atomic and the electronic structures of 4d-transition-metal nitrides. Brazilian journal of physics 2006, 36 (2A), 470-473.
49.Seifitokaldani, A.; Savadogo, O.; Perrier, M., Density functional theory (DFT) computation of the oxygen reduction reaction (ORR) on titanium nitride (TiN) surface. Electrochimica Acta 2014, 141, 25-32.
50.Hwang, B. J.; Senthil Kumar, S. M.; Chen, C.-H.; Chang, R.-W.; Liu, D.-G.; Lee, J.-F., Size and alloying extent dependent physiochemical properties of Pt− Ag/C nanoparticles synthesized by the ethylene glycol method. The Journal of Physical Chemistry C 2008, 112 (7), 2370-2377.
51.Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T., Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. Journal of the American Chemical Society 2005, 127 (31), 11140-11145.
52.Sheng, W.; Gasteiger, H. A.; Shao-Horn, Y., Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. Journal of The Electrochemical Society 2010, 157 (11), B1529-B1536.
53.Inoue, H.; Wang, J.; Sasaki, K.; Adzic, R., Electrocatalysis of H2 oxidation on Ru (0001) and Ru (10− 10) single crystal surfaces. Journal of Electroanalytical Chemistry 2003, 554, 77-85.
54.Green, C. L.; Kucernak, A., Determination of the platinum and ruthenium surface areas in platinum− ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. The Journal of Physical Chemistry B 2002, 106 (5), 1036-1047.
55.Grimmer, C.; Zacharias, R.; Grandi, M.; Cermenek, B.; Schenk, A.; Weinberger, S.; Mautner, F.-A.; Bitschnau, B.; Hacker, V., Carbon supported ruthenium as anode catalyst for alkaline direct borohydride fuel cells. The Journal of Physical Chemistry C 2015, 119 (42), 23839-23844.
56.Wang, J. X.; Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W.-P.; Adzic, R. R., Oxygen reduction on well-defined core− shell nanocatalysts: particle size, facet, and Pt shell thickness effects. Journal of the American Chemical Society 2009, 131 (47), 17298-17302.

無法下載圖示 全文公開日期 2024/08/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE