簡易檢索 / 詳目顯示

研究生: 范秀
Nermeen - Salah El Dein Soliman El Safory
論文名稱: 重組透明質酸脢之表現生產及其應用
Hyaluronidases as Biotechnological Tools: Its Recombinant Expression, Purification, Characterization, and Applications
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 陳秀美
Hsiu-Mei Chen
李冠群
Guan-Chiun Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 213
中文關鍵詞: 重組透明質酸脢之表現生產及其應用
外文關鍵詞: Hyaluronidases ; Recombinant Expression
相關次數: 點閱:181下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

透明質酸脢是水解透明質之酵素,廣泛分佈於自然界,存在於哺乳類動物、昆蟲、水蛭及細菌中,本論文首先在第一、二章對透明質酸脢的分類、來源、活性分析法、生物化學特性、觸媒反應機制、及其在醫藥、生物產業上之應用做了詳盡、廣泛的文獻回顧。第三章中以基因工程的方法將細菌Streptococcus pyrogenes之噬菌體H4489A所含之透明質酸裂解脢(hyaluronate lyase)基因在大腸桿菌中表現,透明質酸裂解脢是屬於透明質酸脢之一種,裂解透明質酸產生出具不飽和鍵之多醣,重組透明質酸裂解脢經固定金屬層析後,再以離子交換層析純化,所得之純化酵素分子量約40 KDa,最佳反應pH、溫度分別在5.5及37oC。在第四章中探討多種二價金屬離子及界面活性劑對此重組透明質酸裂解脢活性之影響,鎂離子可活化但銅、鎳、鈷離子完全抑制其活性。其反應動力學可以Michaels-Menten模式來描述,其中動力學參數Km為0.44mg/ml,最大反應速率Vm為0.20 贡mol/ml/min,變性溫度在46 oC左右。此外也以CD光譜在尿素及鹽酸胍 (guanidine hydrochloride) 等變性劑的作用下研究透明質酸裂解脢之二級結構。在第五章中討論裂解脢裂解透明質酸所產生出具不飽和鍵之多醣,經陰離子交換層析分離後可得到20種片段不同之不飽和多醣,此不飽和多醣對四種腫瘤細胞具有輕微之細胞毒性,但有抗脂質(lipid)氧化的能力,及清除自由基的活性。第六章中將探討人類精子細胞膜表面之透明質酸水解脢(rhuPH20) 的異源表現,以嗜甲基酵母菌(Pichia pastoris)為宿主細胞,所使用之調控系統為組成性之GAP表現系統,經抗His-tag及PH20之抗體檢驗,證實rhuPH20可成功地被嗜甲基酵母菌所表現出來,培養基之碳源對其表現量有很大的影響,其中以甘油為碳源可得最佳之表現量,經Zymography分析胞外表現之rhuPH20證實其具有活性,在native及reducing條件所測得其分子量分別為120 KDa及56 KDa,推論嗜甲基酵母菌所表現之rhuPH20以dimer型式存在。


Hyaluronidases represent a group of glycosidases, which mainly degrade hyaluronan, a linear, non-sulfated polysaccharide composed of repeating disaccharide units [D-glucuronic acid (1-β-3) N-acetyl-D-glucosamine (1-β-4)]n. They are widely distributed in nature, being found in mammals, insects, leeches and bacteria. Chapters 1 and 2 of this PhD thesis summarizes the past, current research, and state of the art on their classification, sources, activity assays, bio-physical and chemical properties, crystal structural features and its catalytic mechanism. Special emphasis is given to the importance role of that type of enzymes in biotechnological processes, as well as its medicinal and bio-industrial applications.

In first experimental task (Chapter 3), hyaluronate (HA) lyase of Streptococcus pyogenes bacteriophage H4489A, was heterologously expressed in Escherichia coli and purified using immobilized affinity, followed by ion exchange chromatography. Culture extraction and all purification steps were checked by SDS-PAGE electrophoresis. Also, the enzyme purity and activity was detected by zymography. The phage HA lyase activities were estimated by colorimetric and turbidity assays.

Chapter 4 discusses the detailed experimental results on the characterization of hyaluronate (HA) lyase of Streptococcus pyogenes bacteriophage H4489A. The effects of pH, temperature, metal ions (Ca (II), Ni (II), Zn (II), Co (II), Cu (II), and Mg (II)), and surfactants (Triton X-100, Tween 20) on the activity of the purified phage HA lyase were studied. The purified homogeneous preparation of HA lyase has a molecular mass of 40 kDa. The optimum enzymatic activity was achieved at pH ~ 5.5 and 37oC, and the enzyme was stable at pH from 4 to 7 and temperature range from 25 to 45 oC. The enzymatic activity toward HA, was vaguely enhanced by Mg+2, slightly inhibited by Ca+2, Triton X-100, and Tween 20, strongly inhibited by Zn+2, and completely inhibited by Cu+2, Ni+2, Co+2 and sodium dodecyl dulfate. Michaelis-Menten kinetic model determined Michaelis constant of 0.44 mg/ml, maximal velocity of 0.20 μmolml-1min-1. It showed that bacteriophage HA lyase degraded the HA efficiently. Light scattering dynamic measurements determined the denaturation temperate of HA lyase of about 46oC. Circular dichromism and UV-visible absorption spectroscopy estimated the changes in secondary structure of native and denatureated HA lyase. This characterization data provided an important basis for the exploitation of HA lyases.

In the third experimental task (Chapter 5), the recombinant hyaluronate lyase (EC 4.2.2.1, HA lyase) of Streptococcus pyogenes bacteriophage H4489A was applied to digest hyaluronan producing unsaturated hyaluronan oligomers. The resulted unsaturated hyaluronan oligomers were purified and subjected to anion-exchange high performance chromatography. The cytotoxic activities of naturally hyaluronan, hyaluronate lyase and unsaturated hyaluronan oligomers were tested and evaluated against HEp-2 (human laryngeal carcinoma), Daoy (human medulloblastoma), MCF-7 (human breast adenocarcinoma), and WiDr (human colon adenocarcinoma) tumor cell lines. It was shown that, the purification and anion-exchange HPLC separation method employed here allowed the production and purification of about 20 HA oligomers. Among the compounds tested for its cytotoxic activity, unsaturated HA oligomers exhibited a moderate cytotoxic activity against all four tumor cell lines, while the HA lyase shows a weak cytotoxic activities against the tumor cell lines. In contrast, naturally HA was not effective as it reveals non-significant cytotoxic effects to all tumor cell types. The experimental data revealed that, both naturally HA and unsaturated HA oligomers exhibited a reasonable antilipid oxidation activity. However, unsaturated HA oligomers gives strong antilipid oxidation activities than naturally HA. Quite the opposite, HA lyase displayed weak antilipid oxidation activities. In this context, HA oligomers exhibited a strong radical scavenging activity than HA, in which HA shows a moderate activity. While, it was observed that, HA lyase shows weak radical scavenging activity. It is worth mentioning that, there is slightly increment of antioxidation activities of naturally HA, native HA lyase protein, unsaturated HA oligomers with the increase of their concentrations.

In Chapter 6, a novel recombinant human hyaluronidase (rhuPH20) was expressed in Pichia pastoris. The recombinant human PH-20 was detected by anti His tag and anti PH-20 –antibody under reducing and non-reducing conditions. It was found that, the active recombinant human PH-20 (rhuPH20) could be successfully and its expression level was affected by the carbon sources employed in the culture media. The maximum cell growth was achieved by using dextrose and sorbitol as carbon sources. The level of rhuPH-20 expression reached the optimum when glycerol was used as the carbon source. The molecular weight of expressed rhPH-20 confirmed using western blotting analysis and zymoraphy was found to be around 120 kDa in the native condition, while it was detected of about 56 kDa under reducing condition. Evidently, rhPH-20 was expressed in a dimer form in Pichia pastoris.

TABLE OF CONTENTS Page No. Cover …………………………………………………………………… I List of Publications ……………………………………………………... III Doctoral Dissertation Advisor Recommendation ………………………. IV Qualification Form by Degree Examination Committee ……………….. V Chinese Abstract ……………………………………………………….. VI English Summary ……………………………………………………..... VII Dedication ………………………………………………………………. IX Acknowledgement …………………………………………………….... X Table of Contents ………………………………………………………. XI List of Tables …………………………………………………………… XV List of Figures ………………………………………………………….. XVI Chapter 1 Preface, State of the Art, and Objectives 1 1.1. Preface and State of the Art ……………….......... 2 1.2. Objectives ……………………………………….. 4 Chapter 2 Literature Studies 5 2.1. Hyaluronidases: A group of degradtive enzymes …………………………………………... 6 2.2. Classification of hyaluronidases ………………….. 10 2.3. Sources of hyaluronidases ………………............... 12 2.4. Property, crystal structural features and catalytic mechanism of hyaluronidases ……………………. 16 2.5. Eukarytes hyaluronidases ...……………………… 16 2.5.1. Human hyaluronidases ………………………… 16 2.5.2. Bovin testicular hyaluronidases (BTH) ………… 19 2.5.3. Bee venom hyaluronidase (BVH) ……………… 25 2.5.4. Other venom hyluronidases ……………………. 27 2.6. Prokarytic (bacterial) hyaluronidases ……………. 28 2.7. Invertebrate (Leech) hyaluronidases ...………….. 29 2.8. Activity assays of hyaluronidases ………………... 29 2.8.1. Chemical methods ……………………………… 29 2.8.1.1. Quantification of reducing sugars …………… 29 2.8.1.2.Determination of reducing N-acetylglucosamine 30 2.8.2. Physicochemical methods ……………………… 31 2.8.2.1. Mucin clot prevention method ………………. 31 2.8.2.2. Spinnability method …………………………. 31 2.8.2.3. Viscosity reduction method …………………. 32 2.8.2.4. Turbidimetric method ……………………….. 32 2.8.3. Biological methods ………………………….. 33 2.8.3.1. Spreading effect method …………………… 33 2.9. Biological functions of hyaluronidases ………….. 34 2.9.1. Tumor development and progression …………. 34 2.9.2. Fertilization …………………………………. 40 2.10. References………………………………………. 42 Chapter 3 Heterologous expression and Purification of Streptococcus pyogenes bacteriophage H4489A hyaluronate lyase in Escherichia coli 63 3.1. Introduction ………………………………………. 64 3.2. Experimental ……………………………………… 65 3.2.1. Materials and chemicals ………………………... 65 3.2.2. Phage HA lyase vector construction …………… 66 3.2.3. Generation of component E. coli ………………. 67 3.2.4. Transformation of competent E. coli …………… 67 3.2.5. Restriction enzyme mapping for the selection of positive clones ………………………………….. 67 3.2.6. Agaros gel electrophoresis ……………………… 68 3.2.7. Expression phage HA lyase in E. coli BL21 …… 68 3.2.8. Separation of soluble and insoluble cell fractions 69 3.2.9. Purification of recombinant phage HA lyase …... 69 3.2.10. Discontinuous SDS-PAGE ……………………. 70 3.2.11. Colloidal coomasi brilliant blue staining …….. 70 3.2.12. Protein content ………………………………… 71 3.2.13. Zymography of HA lyase …………………….. 71 2.2.14. Activity assays of HA lyase ………………….. 72 3.214.1. Colorimetric assay …………………………… 72 3.2.14.2. Turbidity assay ……………………………… 72 3.3. Results and discussions …………………………... 73 3.4. References ……………………………………….. 78 Chapter 4 Characterization of hyaluronate lyase from Streptococcus pyogenes bacteriophage H4489A 83 4.1. Introduction ………………………………………. 84 4.2. Experimental ……………………………………… 85 4.2.1. Recombinant HA lyase enzyme and chemicals … 85 4.2.2. Effect of pH on the activity of HA lyase ……….. 85 4.2.3. Effect of temperature on the activity of HA lyase 86 4.2.4. Effect of metal ions and surfactants on the activity of HA lyase …………………………….. 86 4.2.5. Determination of kinetic parameters of HA lyase. 86 4.2.6. Dynamic light scattering measurements ………... 86 4.2.7. UV-circular dichroism spectra …………………. 88 4.2.8. UV-visible absorption measurements …………... 88 4.3. Results and discussions …………………………... 89 4.4. References ………………………………………... 105 Chapter 5 Cytotoxic and antioxidant effects of unsaturated hyaluronic acid oligomers 112 5.1. Introduction ………………………………………. 113 5.2. Experimental & Methodology ……………………. 115 5.2.1. Materials ………………………………………... 115 5.2.2. Preparation, purification and HPLC analysis of HA oligomers via enzymatic digestion of HA …. 115 5.2.3. Cytotoxic activities ……………………………... 116 5.2.4. Antioxidant activities …………………………… 117 5.2.4.1. Lipid oxidation inhibition assay ……………… 117 5.2.4.2. DPPH radical scavenging assay ………............ 118 5.2.5. Results and discussions ………………………… 119 5.2.6. References ………………….. …………............. 128 Chapter 6 Cloning and Expression of Novel Recombinant Human Hyaluronidase (rHuPH20) 135 6.1. Introduction ………………………………………. 136 6.2. Experimental ……………………………………… 140 6.2.1. Materials and chemicals ………………………... 140 6.2.2. Construction of recombinant plasmids …………. 140 6.2.3. Preparation of competent Pichia pastoris ……… 141 6.2.4. Transformation of Pichia pastoris ……………… 142 6.2.5. PCR screening of recombinant Pichia pastoris Transformants …………………………………... 142 6.2.6. Expression of human PH-20 in Pichia pastoris ... 142 6.2.7. Trichloroacetic acid (TCA) protein precipitation. 143 6.2.8. SDS-PAGE, western blotting, and Zymography .. 143 6.2.9. Detection of glycoprotein by PAS staining …….. 144 6.2.10. Activity assay of recombinant human PH20 …. 145 6.3. Results and Discussions …………………………... 145 6.4. References ………………………………………... 152 Chapter 7 Conclusions and Future Prospects 157 7.1. Conclusions ……………………………………………. 158 7.2. Future Perspectives ……………………………………. 161 APPENDIX …………………………………………............................... 162 CURRICULUM VITAE ………………………………………………... 165 COPY RIGHT …………………………………………………………... 169

Aboughalia, A. H. (2006). Elevation of hyaluronidase-1 and soluble intercellular adhesion molecule-1 helps select bladder cancer patients at risk of invasion. Archives Medical Research, 37, 109–116.
Abramson, C. (1973). Staphylococcal hyaluronate lyase. Contributions to microbiology and immunology, 1, 376–389.
Abramson, C., & Friedman, H. (1968). Staphylococcal hyaluronate lyase: Purification and characterization studies. Journal of Bacteriology, 96, 886–892.
Afify, A. M., Stern, M., Guntenhöner, M., & Stern, R. (1993). Purification and characterization of human serum hyaluronidase. Archives Biochemistry and Biophysics, 305, 434–441.
Akhtar, M. S., & Bhakuni, V. (2003). Streptococcus pneumoniae hyaluronate lyase contains two noncooperative independent folding/unfolding structural domains: Characterization of functional domain and inhibitors of enzyme. Journal of Biological Chemistry, 278, 25509–25516.
Akhtar, M. S., & Bhakuni, V. (2007). Role of ionic interactions and linker in the domain interaction and modulation of functional activity of hyaluronate lyases. Biochemical and Biophysical Research Communications, 353, 286–292.
Akhtar, M. S., Krishnan, M. Y., & Bhakuni, V. (2006). Insights into the mechanism of action of hyaluronate lyase: Role of C-terminal domain and Ca2+ in the functional regulation of enzyme. Journal of Biological Chemistry, 281, 28336–28344.
Alburn, H. E., & Whitley, R. W. (1951). Factors affecting the assay of hyaluronidase. Journal of Biological Chemistry, 192, 379–393.
Allalouf, D., Ber, A., & Ishay, J. (1975). Properties of testicular hyaluronidase of the honey bee and oriental hornet: Comparison with insect venom and mammalian hyaluronidases. Comparative Biochemistry Physiology B, 50, 331–337.
Allen, A. G., Lindsay, H., Seilly, D., Bolitho, S., Peters, S. E., & Maskell, D. J. (2004). Identification and characterisation of hyaluronate lyase from Streptococcus suis. Microbial Pathogenesis, 36, 327–335.
Arvidson, S. O. (1983). C. S. F. Easmon, & C. Adlam (Eds.), Extracellular enzymes from Staphylococcus aureus, Staphylococci and Staphylococcal infections (pp. 745–808).
Asteriou, T., Deschrevel, B., Delpech, B., Bertrand, P., Bultelle, F., Merai, C., et al. (2001). An improved assay for the N-acetyl-D-glucosamine reducing ends of polysaccharides in the presence of proteins. Analytical Biochemistry, 293, 53–59.
Asteriou, T., Vincent, J., Tranchepain, F.,&Deschrevel, B. (2006). Inhibition of hyaluronan hydrolysis catalysed by hyaluronidase at high substrate concentration and low ionic strength. Matrix Biology, 25, 166–174.
Baba, D., Kashiwabara, S., Honda, A., Yamagata, K., Wu, Q., Ikawa, M., et al. (2002). Mouse sperm lacking cell surface hyaluronidase PH-20 capass though the layer of cumulus cells and fertilize the egg. Journal of Biological Chemistry, 277, 30310–30314.
Baker, J. R., Dong, S., & Pritchard, D. G. (2002). The hyaluronan lyase of Streptococcus pyogenes bacteriophage H4489A. Biochemical Journal, 365, 317–322.
Baker, J. R., & Pritchard, D. G. (2000). Action pattern and substrate specificity of the hyaluronan lyase from group B streptococci. Biochemical Journal, 348, 465–471.
Benchetrit, L. C., Pahuja, S. L., Gray, E. D., & Edstrom, R. D. (1977). A sensitive method for the assay of hyaluronidase activity. Analytical Biochemistry, 79, 431–437.
Birkedal-Hansen, H. (1987). Catabolism and turnover of collagens: Collagenases. Methods in Enzymology, 144, 140–171.
Bollet, A. J., Bonner, W. M., & Nance, J. L. (1963). The Presence of hyaluronidase in various mammalian tissues. Journal of Biological Chemistry, 238, 3522–3572.
Botzki, A., Salmen, S., Bernhardt, G., Buschauer, A., & Dove, S. (2005). Structure-based design of bacterial hyaluronan lyase inhibitors. QSAR Combinatorial Science, 24, 458–469.
Budds, M., Edwards, J., Olavesen, A., & Gacesa, P. (1987). A comparison of the properties of the hyaluronidase from a temperate and a tropical species of leech. Comparative Biochemistry and Physiology, 87B, 497–500.
Calabro, A., Benavides, M., Tammi, M., Hascall, V. C., & Midura, R. J. (2000). Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology, 10(3), 273–281.
Chain, E., & Duthie, E. S. (1939). A mucolytic enzyme in testis extracts. Nature, 144, 971–978.
Chang, N. S. (1998). Transforming growth factor-beta protection of cancer cells against tumor necrosis factor cytotoxicity is counteracted by hyaluronidase. International Journal of Molecular Medicine, 2, 653–659.
Chang, N. S. (2002). Transforming growth factor-beta1 blocks the enhancement of tumor necrosis factor cytotoxicity by hyaluronidase Hyal-2 in L929 fibroblasts. BMC Cell Biology, 3, 3–8.
Chao, K. L., Muthukumar, L., & Herzberg, O. (2007). Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis. Biochemistry, 46, 6911–6920.
Chen, F., Kakizaki, I., Yamaguchi, M., Kojima, K., Takagaki, K.,&Endo, M. (2009). Novel products in hyaluronan digested by bovine testicular hyaluronidase. Glycoconjugate Journal, 26, 559–566.
Cherr, G. N., Meyers, S. A., Yudin, A. I., VandeVoort, C. A., Myles, D. G., Primakoff, P., et al. (1996). The PH-20 protein in cynomolgus macaque spermatozoa: Identification of two different forms exhibiting hyaluronidase activity. Developmental Biology, 175, 142–153.
Cherr, G. N., Yudin, A. I.,& Overstreet, J.W. (2001). The dual functions of GPI-anchored PH-20: Hyaluronidase and intracellular signaling. Matrix Biology, 20, 515–525.
Christopoulos, T. A., Papageorgakopoulou, N., Theocharis, D. A., Mastronikolis, N. S., Papadas, T. A.,&Vynios, D. H. (2006). Hyaluronidase andCD44hyaluronan receptor expression in squamous cell laryngeal carcinoma. Biochimica et Biophysica Acta, 1760, 1039–1045.
Cibulkova, E., Manaskova, P., Jonakova, V., & Ticha, M. (2007). Preliminary characterization of multiple hyaluronidase forms in boar reproductive tract. Theriogenology, 68, 1047–1054.
Comtesse, N., Maldener, E., & Meese, E. (2001). Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a beta-N-acetylglucosaminidase. Biochemical Biophysical Research Communication, 283, 634–640.
Cramer, J. A., & Bailey, L. C. (1991). A reversed-phase ion-pair high-performance liquid chromatography method for bovine testicular hyaluronidase digests using postcolumn derivatization with 2-cyanoacetamide and ultraviolet detection. Analytical Biochemistry, 196, 183–191.
Cramer, J. A., Bailey, L. C., Bailey, C. A., &Miller, R. T. (1994). Kinetic and mechanistic studies with bovine testicular hyaluronidase. Biochimica et Biophysica Acta, 1200, 315–321.
Csoka, A. B., Frost, G. I., Wong, T.,&Stern, R. (1997). Purification and microsequencing of hyaluronidase isozymes from human urine. FEBS Letters, 417, 307–310.
Csoka, T. B., Frost, G. I., & Stern, R. (1997). Hyaluronidases in tissue invasion. Invasion Metastasis, 17, 297–311.
Csoka, A. B., Frost, G. I., Heng, H. H., Scherer, S. W., Mohapatra, G., Stern, R., et al. (1998). The hyaluronidase gene HYAL1 maps to chromosome 3p21.2-p21.3 in human and 9F1 F2 in mouse, a conserved candidate tumor suppressor locus. Genomics, 48, 63–70.
Csoka, A. B., Scherer, S. W., & Stern, R. (1999). Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics, 60, 356–361.
Csoka, A. B., Frost, G. I., & Stern, R. (2001). The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biology, 20, 499–508.
Da Silveira, R. B., Chaim, O. M., Mangili, O. C., Gremski, W., Dietrich, C. P., Nader, H. B., et al. (2007). Hyaluronidases in Loxosceles intermedia (Brown spider) venom are endo-beta-N-acetyl-D-hexosaminidases hydrolases. Toxicon, 49, 758–768.
Danilkovitch-Miagkova, A., Duh, F. M., Kuzmin, I., Angeloni, D., Liu, S. L., Miller, A. D., et al. (2003). Hyaluronidase 2 negatively regulates RON receptor tyrosine kinase and mediates transformation of epithelial cells by jaagsiekte sheep retrovirus. Proceedings of the National Academy of Sciences USA, 100, 4580–4585.
De Maeyer, E., & De Maeyer-Guignard, J. (1992). The growth rate of two transplantable murine tumors, 3LL lung carcinomar and B16F10 melanoma, is influenced by Hyal1, a locus determining hyaluronidase levels and polymorphism. International Journal of Cancer, 19, 657–660.
Di Ferrante, N. (1956). Turbidimetric measurement of acid mucopolysaccharides and hyaluronidase activity. Journal of Biological Chemistry, 222, 303–306.
Dorfman, A., & Ott, M. L. (1948). A turbidimetric method for the assay of hyaluronidase. Journal of Biological Chemistry, 172, 367–375.
Dorfman, A., Ott, M. L., & Whitney, R. (1948). The hyaluronidase inhibitor of human blood. Journal of Biological Chemistry, 174, 621–629.
Drouillard, S., Armand, S., Davies, G. J., Vorgias, C. E., & Henrissat, B. (1997). Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation. Biochemistry Journal, 328, 945–949.
Duterme, C., Mertens-Strijthagen, J., Tammi, M., & Flamion, B. (2009). Two novel functions of hyaluronidase-2 (Hyal2) are formation of the glycocalyx and control of CD44-ERM interactions. Journal of Biological Chemistry, 284, 33495–33508.
El Maradny, E., Kanayama, N., Kobayashi, H., Hossain, B., Khatun, S., She, L. P., et al. (1997). The role of hyaluronic acid as a mediator and regulator of cervical ripening. Human Reproduction, 12, 1080–1088.
Etesse, B., Beaudroit, L., Deleuze, M., Nouvellon, E., & Ripart, J. (2009). Hyaluronidase: Here we go again. Annales Francaises d’Anesthesie et de Reanimation, 28, 658–665.
Evanko, S. P., & Wight, T. N. (1999). Intracellular localization of hyaluronan in proliferating cells. Journal of Histochemistry and Cytochemistry, 47, 1331–1341.
Feinberg, R. N., & Beebe, D. C. (1983). Hyaluronate in vasculogenesis. Science, 220, 1177–1179.
Florman, H. M., & Ducibella, T. (2006). Fertilization in mammals. In J. D. Neill (Ed.), The physiology of reproduction (3rd ed., vol. 1, pp. 55–112). San Diego: Elsevier.
Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars on Oncology, 29, 15–18.
Frost, G. I., & Stern, R. (1997). A microtiter-based assay for hyaluronidase activity not requiring specialized reagents. Analytical Biochemistry, 251, 263–269.
Frost, G. I., Csoka, T., & Stern, R. (1996). The hyaluronidases: A chemical, biological and clinical overview. Trends Glycoscience Glycotechnology, 8, 419–434.
Frost, G. I., Csoka, A. B., Wong, T., & Stern, R. (1997). Purification, cloning, and expression of human plasma hyaluronidase. Biochemical Biophysical Research Communications, 236, 10–15.
Frost, G. I., Mohapatra, G., Wong, T. M., Csoka, A. B., Gray, J. W., & Stern, R. (2000). HYAL1 LUCA-1, a candidate tumor suppressor gene on chromosome 3p21.3, is inactivated in head and neck squamous cell carcinomas by aberrant splicing of pre-mRNA. Oncogene, 19, 870–877.
Fulton, J. K., Marcus, S., & Robinson, W. D. (1950). Use of the streptococcal decapsulation test as a measure of thermolabile hyaluronidase inhibitor in serum. Annals of the New York Academy of Sciences, 52, 1133–1138.
Gacesa, P., Savitsky, M. J., Dodgson, K. S., & Olavesen, A. H. (1981). A recommended procedure for the estimation of bovine testicular hyaluronidase in the presence of human serum. Analytical Biochemistry, 118, 76–84.
Gerlach, D., & Köhler, W. (1972). Hyaluronate lyase from Streptococcus pyogenes. II. Characterisation of the hyaluronate lyase (EC 4.2.99.1). Zentralbl Bakteriol, 221, 296–302.
Ghatak, S., Misra, S., & Toole, B. P. (2002). Hyaluronan oligosaccharides inhibit anchorageindependent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. Journal Biological Chemistry, 277, 38013–38020.
Girish, K. S., & Kemparaju, K. (2005a). A low molecular weight isoform of hyaluronidase: Purification from Indian cobra (Naja naja) venom and partial characterization. Biochemistry (Moscow), 70, 708–712.
Girish, K. S., & Kemparaju, K. (2005b). Inhibition of Naja naja venom hyaluronidase by plant-derived bioactive components and polysaccharides. Biochemistry (Moscow), 70, 948–952.
Girish, K. S., Jagadeesha, D. K., Rajeev, K. B., & Kemparaju, K. (2002). Snake venom hyaluronidase: An evidence for isoforms and extracellular matrix degradation. Molecular Cell Biochemistry, 240, 105–110.
Girish, K. S., Shashidharamurthy, R., Nagaraju, S., Gowda, T. V., & Kemparaju, K. (2004). Isolation and characterization of hyaluronidase a “spreading factor” from Indian cobra (Naja naja) venom. Biochimie, 86, 193–202.
Gmachl, M., & Kreil, G. (1993). Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proceedings of the National Academy of Sciences, 90, 3569–3573. http://www.pnas.org/
Guntenhoner, M. W., Pogrel, M. A., & Stern, R. (1992). A substrate-gel assay for hyaluronidase activity. Matrix Biology, 12, 388–396.
Gunter, G. S. (1949). The determination of spinnability of synovial fluid and its destruction by enzymic activity. Australian Journal Experimental Biology & Medical Science, 27, 265–274.
Harada, H., & Takahashi, M. (2007). CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. Journal of Biological Chemistry, 282, 5597–5607.
Harris, T. N., & Harris, S. (1950). A comparison of physicochemical measurements of hyaluronidase and of neutralizing antibodies thereto. Journal of Immunology, 65, 255–268.
He, H., Li, W., Tseng, D. Y., Zhang, S., Chen, S.-Y., Day, A. J., et al. (2009). Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-α-inhibitor purified from extracts of human amniotic membrane. Journal of Biological Chemistry, 284, 20136–20146.
Heatley, F., & Scott, J. E. (1988). A water molecule participates in the secondary structure of hyaluronan. Biochemical Journal, 254, 489–493.
Heldin, P.,&Pertoft, H. (1993). Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells. Experimental Cell Research, 208, 422–429.
Hemming, R., Martin, D. C., Slominski, E., Nagy, J. I., Halayko, A. J., Pind, S., et al. (2008). Mouse Hyal3 encodes a 45–56 kDa glycoprotein whose overexpression increases hyaluronidase 1 activity in cultured cells. Glycobiology, 18, 280–289.
Henrissat, B., & Bairoch, A. (1996). Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal, 316, 695–696.
Highsmith, S., Garvin, J. H., Jr., & Chipman, D. M. (1975). Mechanism of action of bovine testicular hyaluronidase. Mapping of the active site. Journal of Biological Chemistry, 250, 7473–7480.
Hill, J. (1976). Purification and properties of streptococcal hyaluronate lyase. Infection and Immunity, 14, 726–735.
Hoechstetter, J., Oettl, M., Asen, I., Molz, R., Bernhardt, G., & Buschauer, A. (2001). Discrepancies in apparent enzymatic activity of bovine testicular hyaluronidase depend on the type of assay. Archive Pharmaceutical Medical Chemistry, 334, 37.
Hofinger, E. S., Spickenreither, M., Oschmann, J., Bernhardt, G., Rudolph, R., & Buschauer, A. (2007). Recombinant human hyaluronidase Hyal-1: Insect cells versus Escherichia coli as expression system and identification of low molecular weight inhibitors. Glycobiology, 17, 444–453.
Homer, K. A., Denbow, L., & Beighton, D. (1993). Spectrophotometric method for the assay of glycosaminoglycans and glycosaminoglycan-depolymerizing enzymes. Analytical Biochemistry, 214, 435–441.
Hovingh, P., & Linker, A. (1999). Hyaluronidase activity in leeches (hirudinea). Comparative Biochemistry and Physiology B, 124, 319–326.
Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-Genevaux, P. S., et al. (2006). The PROSITE database. Nucleic Acids Research, 34, 227–230.
Humphrey, J. H. (1957). International standard for hyaluronidase. Bulletin World Health Organization, 16, 291–294.
Humphrey, J., & Jaques, R. (1953). Hyaluronidase: Correlation between biological assay and other methods of assay. Biochemical Journal, 53, 59–62.
Hynes, W. L., &Walton, S. L. (2000). Hyaluronidases of Gram-positive bacteria. FEMS Microbiology Letters, 183, 201–207.
Ikegami-Kawai, M., & Takahashi, T. (2002). Microanalysis of hyaluronan oligosaccharides by polyacrylamide gel electrophoresis and its application to assay of hyaluronidase activity. Analytical Biochemistry, 311, 157–165.
Ingham, E., Holland, K. T., Gowland, G.,&Cunliffe,W.J. (1979). Purification and partial characterization of hyaluronate lyase (EC 4.2.2.1) from Propionibacterium acnes. Journal of Gene Microbiology, 115, 411–418.
Jaques, R. (1953). A biological hill of assay of hyaluronidase. Biochemical Journal, 53, 56–59.
Jedrzejas, M. J., & Chantalat, L. (2000). Structural studies of Streptococcus agalactiae hyaluronate lyase. Acta Crystallographica Section D Biological Crystallography, 56, 460–463.
Jedrzejas, M. J., & Stern, R. (2005). Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis. Proteins, 61, 227–238.
Jedrzejas, M. J., Mello, L. V., de Groot, B. L., & Li, S. (2002). Mechanism of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. Structures of complexes with the substrate. Journal of Biological Chemistry, 277, 28287–28297.
Jedrzejas, M. J., Mewbourne, R. B., Chantalat, L., & McPherson, D. T. (1998). Expression and purification of Streptococcus pneumoniae hyaluronate lyase from Escherichia coli. Protein Expression & Purification, 13, 83–89.
Karlstam, B., & Ljungloef, A. (1991). Purification and partial characterization of a novel hyaluronic acid-degrading enzyme from Antarctic krill (Euphasia superba). Polar Biology, 11, 501–507.
Kasahara, K., & Sania, Y. (2000). Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconjugate Journal, 17, 153–162.
Kass, E. H.,&Seastone, C. V. (1944). The role of the mucoid polysaccharide (hyaluronic acid) in the virulence of group A hemolytic streptococci. Journal of Experimental Medicine, 79, 319–330.
Kelly, S. J., Taylor, K. B., Li, S., & Jedrzejas, M. J. (2001). Kinetic properties of Streptococcus pneumoniae hyaluronate lyase. Glycobiology, 11, 297–304.
Kim, E., Baba, D., Kimura, M., Yamashita, M., Kashiwabara, S., & Baba, T. (2005). Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass. Proceedings of the National Academy of Sciences USA, 102, 18028–18033.
Kim, E., Yamashita, M., Kimura, M., Honda, A., Kashiwabara, S., & Baba, T. (2008). Sperm penetration through cumulus mass and zona pellucida. International Journal of Developmental Biology, 52, 677–682.
Kimura, M., Kim, E., Kang, W., Yamashita, M., Saigo, M., Yamazaki, T., et al. (2009). Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1 in fertilization1. Biology of Reproduction, 81, 939–947.
Knudson, W. (1996). Tumor-associated hyaluronan providing an extracellular matrix that facilitates invasion. American Journal of Pathology, 4, 1721–1725.
Knudson, W., & Knudson, C. B. (1995). Overproduction of hyaluronan in the tumor stroma. Tumor Matrix Biology, 55–79.
Knudson, W., Bartnik, E., & Knudson, C. B. (1993). Assembly of pericellular matrices by COS-7 cells transfected with CD44 lymphocyte-homing receptor genes. Proceedings of the National Academy of Sciences USA, 90, 4003–4007.
Kreil, G. (1995). Hyaluronidases – A group of neglected enzymes. Protein Science, 4, 1666–1669.
Krishnapillai, A. M., Taylor, K. D. A., Morris, A. E. J., & Quantick, P. C. (1999). Characterisation of Norway lobster (Nephrops norvegicus) hyaluronidase and comparison with sheep and bovine testicular hyaluronidase. Food Chemistry, 65, 515–521.
Krishnapillai, A. M., Taylor, K. D. A., Morris, A. F. J., & Quantick, P. C. (1999) Chracterisation of Norway lobster (Nephrops norvegicus) hyaluronidase and comparision with sheep and bovine testicular hyaluronidase. Food Chemistry, 65, 515–521.
Krupa, J. C., Marie Butler, A., & Mort, J. S. (2003). Quantitative bead assay for hyaluronidase and heparinase I. Analytical Biochemistry, 319, 280–286.
Kuehn, A. V., Ozegowski, J. H., Peschel, G., & Neubert, R. H. (2004). Complementary exploration of the action pattern of hyaluronate lyase from Streptococcus agalactiae using capillary electrophoresis, gel-permeation chromatography and viscosimetric measurements. Carbohydrate Research, 339, 2541–2547.
Laurent, T., & Fraser, J. (1992). Hyaluronan. FASEB Journal, 6, 2397–2404.
Lepperdinger, G., Strobl, B., & Kreil, G. (1998). HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. Journal of Biological Chemistry, 273, 22466–22470.
Lepperdinger, G., Müllegger, J., & Kreil, G. (2001). Hyal2 – less active, but more versatile? Matrix Biology, 20, 509–514.
Li, S., Kelly, S., Lamani, E., Ferraroni, M., & Jedrzejas, M. J. (2000). Structural basis of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. EMBO Journal, 19, 1228–1240.
Li, S., Taylor, K. B., Kelly, S. J.,&Jedrzejas, M. J. (2001). Vitamin C inhibits the enzymatic activity of Streptococcus pneumoniae hyaluronate lyase. Journal of Biological Chemistry, 276, 15125–15130.
Li, M. W., Yudin, A. I., Robertson, K. R., Cherr, G. N., & Overstreet, J. W. (2002). Importance of glycosylation and disulfide bonds in hyaluronidase activity of macaque sperm surface PH-20. Journal of Andrology, 23, 211–219.
Li, S., & Jedrzejas, M. J. (2001). Hyaluronan binding and degradation by Streptococcus agalactiae hyaluronate lyase. Journal of Biological Chemistry, 276, 41407–41416.
Liefländer, M., & Stegemann, H. (1968). Enzyme electrophoresis in embedding polymerizates of acrylamide. C. Testicular hyaluronidases. Hoppe Seylers Z Physiology and Chemistr, 349, 157–160.
Lin, Y., Mahan, K., Lathrop, W. F., Myles, D. G., & Primakoff, P. (1994). A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg. Journal of Cell Biology, 125, 1157–1163.
Linker, A., Meyer, K., & Hoffman, P. (1960). The production of hyaluronate oligosaccharides by leech hyaluronidase and alkali. Journal of Biological Chemistry, 235, 924–927.
Lokeshwar, V. B., Rubinowiz, D., Achroeder, G. L., Forgacs, E., Minna, J. D., Block, N. L., et al. (2001). Stroma and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in protate cancer. Journal of Biological Chemistry, 276, 11922–11932.
Lokeshwar, V. B., Schroder, G. L., Carey, R. I., Soloway, M. S., & Lida, N. (2002). Regulation of hyaluronidase activitiy by alternative mRNA splicing. Journal of Biological Chemistry, 277, 33654–33663.
Lokeshwar, V. B., Cerwinka, W. H.,&Lokeshwar, B. L. (2005). HYAL1 hyaluronidase: A
molecular determinant of bladder tumor growth and invasion. Cancer Research, 65, 2243–2250.
Louie, G. V., Yang, W., Bowman, M. E., & Choe, S. (1997). Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor. Molecular Cell, 1, 67–78.
Madinaveitia, J.,&Quibell, T. H. H. (1940). Diffusing factors. VI. The action of testicular extracts on the viscosity of vitreous humor preparations. Biochemical Journal, 34, 625–631.
Maingonnat, C., Victor, R., Bertrand, P., Courel, M. N., Maunoury, R., & Delpech, B. (1998). Activation and inhibition of human cancer cell hyaluronidase by proteins. Analytical Biochemistry, 268, 30–34.
Makris, G., Wright, J. D., Ingham, E., & Holland, K. T. (2004). The hyaluronate lyase of Staphylococcus aureus – A virulence factor? Microbiology, 150, 2005–2013.
Markovic-Housley, Z., Miglierini, G., Soldatova, L., Rizkallah, P. J., Muller, U., & Schirmer, T. (2000). Crystal structure of hyaluronidase, a major allergen of bee venom. Structure Fold Des, 8, 1025–1035.
McArthur, J. D., McKay, F. C., Ramachandran, V., Shyam, P., Cork, A. J., Sanderson- Smith, M. L., et al. (2008). Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation. FASEB Journal, 22, 3146–3153.
McBride,W.H.,&Bard, J. B. L. (1979). Hyaluronidase-sensitive halos around adherent cells. Journal of Experimental Medicinal, 149, 507–515.
McClean, D. (1943). Diffusing factors. II. Methods of assay of hyaluronidase and their correlation with skin-diffusing activity. Biochemical Journal, 37, 169–177.
Mello, L. V., De Groot, B. L., Li, S., & Jedrzejas, M. J. (2002). Structure and flexibility of Streptococcus agalactiae hyaluronate lyase complex with its substrate. Insights into themechanismof processive degradation of hyaluronan. Journal of Biological Chemistry, 277, 36678–43688.
Menezes, G. B., McAvoy, E. F., & Kubes, P. (2009). Hyaluronan, platelets, and monocytes: A novel pro-inflammatory triad. American Journal of Pathology, 174, 1993–1995.
Menzel, E. J.,&Farr, C. (1998). Hyaluronidase and its substrate hyaluronan: Biochemistry, biological activities and therapeutic uses. Cancer Letters, 131, 3–11.
Meyer, K. (1947). The biological significance of hyaluronic acid and hyaluronidase. Physiology Reviews, 27, 335–359.
Meyer, K. (1971). Hyaluronidases. In P. D. Boyer (Ed.), The enzymes, Vol. V (3rd ed., pp. 307–320). New York, London: Academic Press.
Meyer, K., & Rapport, M. M. (1951). The inhibition of testicular hyaluronidase by heavy metals. Journal of Biological Chemistry, 188, 485–490.
Meyer, K., & Rapport, M. M. (1952). Hyaluronidases. Advances in Enzymology and Related Subjects of Biochemistry, 13, 199–236.
Meyer, M. F., Kreil, G., & Aschauer, H. (1997). The soluble hyaluronidase from bull testes is a fragment of the membrane-bound PH-20 enzyme. FEBS Letters, 413, 385–388.
Mio, K., & Stern, R. (2002). Inhibitors of the hyaluronidases. Matrix Biology, 21, 31–37.
Mio, K., Csoka, A. B., Nawy, S. S., & Stern, R. (2001). Detecting hyaluronidase and hyaluronidase inhibitors. Hyaluronan-substrate gel and -inverse substrate gel techniques. Methods in Molecular Biology, 171, 391–397.
Mishra, P., Akhtar, M. S., & Bhakuni, V. (2006). Unusual structural features of the bacteriophage-associated hyaluronate lyase (hylp2). Journal of Biological Chemistry, 281, 7143–7150.
Miura, R. O., Yamagata, S., Miura, Y., Harada, T., & Yamagata, T. (1995). Analysis of glycosaminoglycan-degrading enzymes by substrate gel electrophoresis (zymography). Analytical Biochemistry, 225, 333–340.
Müllegger, J., Reitinger, S., & Lepperdinger, G. (2001). Hapten-labeled hyaluronan, a substrate to monitor hyaluronidase activity by enhanced chemiluminescenceassisted detection on filter blots. Analytical Biochemistry, 293, 291–293.
Morey, S. S., Kiran, K. M., & Gadag, J. R. (2006). Purification and properties of hyaluronidase from Palamneus gravimanus (Indian black scorpion) venom. Toxicon, 47, 188–195.
Morgan, W. T. J., & Elson, L. A. (1934). A colorimetric method for the determination ofNacteylglucosamine andN-acetylchondrosamine. Biochemical Journal, 28, 988–995.
Morton, D. B. (1973). Purification and properties of ovine testicular hyaluronidase. Biochemical Society Transactions, 1, 385.
Muckenschnabel, I., Bernhardt, G., Spruß, T., & Buschauer, A. (1998). Pharmacokinetics and tissue distribution of bovine testicular hyaluronidase and vinblastine in mice: An attempt to optimize the mode of adjuvant hyaluronidase administration in cancer chemotherapy. Cancer Letters, 131, 71–84.
Muckenschnabel, I., Bernhardt, G., Spruß, T., Dietl, B., & Buschauer, A. (1998). Quantitation of hyaluronidases by the Morgan–Elson reaction: Comparison of the enzyme activities in the plasma of tumor patients and healthy volunteers. Cancer Letters, 131, 13–20.
Nagaraju, S., Devaraja, S., & Kemparaju, K. (2007). Purification and properties of hyaluronidase from Hippasa partita (funnel web spider) venom gland extract. Toxicon, 50, 383–393.
Nagata, H., Kojima, R., Sakurai, K., Sakai, S., Kodera, Y., Nishimura, H., et al. (2004). Molecular-weight-based hyaluronidase assay using fluorescent hyaluronic acid as a substrate. Analytical Biochemistry, 330, 356–358.
Nakamura, T., Majima, M., Kubo, K., Takagaki, K., Tamura, S., & Endo, M. (1990). Hyaluronidase assay using fluorogenic hyaluronate as a substrate. Analytical Biochemistry, 191, 21–24.
Nawy, S. S., Csoka, A. B., Mio, K., & Stern, R. (2001). Hyaluronidase activity and hyaluronidase inhibitors. Assay using a microtiter-based system. Methods in Molecular Biology, 171, 383–389.
Necas, J., Brauner, P., & Kolar, J. (2008). Hyaluronic acid (hyaluronan): A review. Veterinarni Medicina, 53, 397–411.
Novak, U., Stylli, S. S., Kaye, A. H., & Lepperdinger, G. (1999). Hyaluronidase-2 overexpression accelerates intracerebral but not subcutaneous tumor formation of murine astrocytoma cells. Cancer Research, 59, 6246–6250.
Nukui, M., Taylor, K. B., McPherson, D. T., Shigenaga, M. K., & Jedrzejas, M. J. (2003). The function of hydrophobic residues in the catalytic cleft of Streptococcus pneumonia hyaluronate lyase. Kinetic characterization of mutant enzyme forms. Journal of Biological Chemistry, 278, 3079–3088.
Oettl, M., Hoechstetter, J., Asen, I., Bernhardt, G., & Buschauer, A. (2003). Comparative characterization of bovine testicular hyaluronidase and a hyaluronate lyase from Streptococcus agalactiae in pharmaceutical preparations. European Journal of Pharmaceutical Sciences, 18, 267–277.
Okorukwu, O., & Vercruysse, K. P. (2003). Effects of ascorbic acid and analogs on the activity of testicular hyaluronidase and hyaluronan lyase on hyaluronan. Journal of Enzyme Inhibition and Medicinal Chemistry, 18, 377–382.
Ozegowski, J. H., Gerlach, D., & Köhler, W. (1981). Reinigung und Charakterisierung von Streptokokken-Hyaluronatlyase. Zentralbl Bakteriol Parasitenkd Infektionskr Hygiene, 249, 310–322.
Ozegowski, J. H., Gunther, E., & Reichardt, W. (1994). Purification and characterization of hyaluronidase from Streptococcus agalactiae. Zentralbl Bakteriol, 280, 497–506.
Pattanaargson, S., & Roboz, J. (1996). Determination of hyaluronidase activity in venoms using capillary electrophoresis. Toxicon, 34, 1107–1117.
Poh, C. H., Yuen, R., Chung, M. C., & Khoo, H. E. (1992). Purification and partial characterization of hyaluronidase from stonefish (Synanceja horrida) venom. Comparative Biochemistry and Physiology, 101, 159–163.
Posey, J. T., Soloway, M. S., Ekici, S., Sofer, M., Civantos, F., Duncan, R. C., et al. (2003). Evaluation of the prognostic potential of hyaluronic acid and hyaluronidase (HYAL1) for prostate cancer. Cancer Research, 63, 2638–2644.
Prehm, P. (1984). Hyaluronate is synthesized at plasma membranes. Biochemical Journal, 220, 597–600.
Prehm, P. (1990). Release of hyaluronate from eukaryotic cells. Biochemical Journal, 267, 185–189.
Prehm, P. (2002). Hyaluronan. In E. J. Vandamme (Ed.), Biopolymers. Weinheim: Wiley-VCH, pp. 379–406.
Prehm, P. (2006). Biosynthesis of hyaluronan: Direction of chain elongation. Biochemical Journal, 398, 469–473.
Primakoff, P., Hyatt, H., &Myles, D. G. (1985). A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida. Journal of Cell Biology, 101, 2239–2244.
Primakoff, P., Lathrop, W., Woolman, L., Cowan, A., & Myles, D. (1988). Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature, 335, 543–546.
Pritchard, D. G., Lin, B., Willingham, T. R., & Baker, J. R. (1994). Characterisation of the group B streptococcal hyaluronate lyase. Archives of Biochemistry and Biophysics, 315, 431–437.
Pritchard, D. G., Trent, J. O., Li, X., Zhang, P., Egan, M. L., & Baker, J. R. (2000). Characterisation of the active site of group B streptococcal hyaluronan lyase. Proteins, 40, 126–134.
Rai, S. K., Duh, F. M., Vigdorovich, V., Danilkovitch-Miagkova, A., Lerman, M. I., & Miller, A. D. (2001). Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein which mediates oncogenic transformation. Proceedings of the National Academy of Sciences USA, 98, 4443–4448.
Ramanaiah, M., Parthasarathy, P. R., & Venkaiah, B. (1990). Isolation end characterization of hyaluronidase from scorpion (Heterometrus fulvipes) venom. Biochemistry International, 20, 301–310.
Rapport, M. M., Meyer, K., & Linker, A. (1950). Correlation of reductimetric and turbidimetric methods for hyaluronidase assay. Journal of Biological Chemistry, 186, 615–623.
Rautela, G. S., & Abramson, C. (1973). Crystallization and partial characterization of Staphylococcus aureus hyaluronate lyase. Archives Biochemistry and Biophysics, 158, 687–694.
Reissig, J. L., Storminger, J. L., & Leloir, L. F. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars. Journal of Biological Chemistry, 217, 959–966.
Reitinger, S., Müllegger, J., & Lepperdinger, G. (2001). Xenopus kidney hyaluronidase-1 (XKH1), a novel type of membrane-bound hyaluronidase, solely degrades hyaluronan at neutral pH. FEBS Letters, 505, 213–216.
Reitinger, S., Boroviak, T., Laschober, G. T., Fehrer, C., Muellegger, J., Lindner, H., et al. (2008). High-yield recombinant expression of the extremophile enzyme, bee hyaluronidase in Pichia pastoris. Protein Expression Purification, 57, 226–233.
Rigden, D. J., & Jedrzejas, M. J. (2003). Structures of Streptococcus pneumonia hyaluronate lyase in complex with chondroitin and chondroitin sulfate disaccharides. Insights into specificity and mechanism of action. Journal of Biological Chemistry, 278, 50596–50606.
Robertson, W. B., Ropes, M. W., & Bauer, W. (1940). Mucinase: A bacterial enzyme which hydrolizes synovial fluid mucin and other mucins. Journal of Biological Chemistry, 133, 261–276.
Saitoh, H., Takagaki, K., Majima, M., Nakamura, T., Matsuki, A., Kasai, M., et al. (1995). Enzymic reconstruction of glycosaminoglycan oligosaccharide chains using the transglycosylation reaction of bovine testicular hyaluronidase. Journal of Biological Chemistry, 270, 3741–3747.
Salmen, S., Hoechstetter, J., Kaesbauer, C., Paper, D. H., Bernhardt, G., & Buschauer, A. (2005). Sulphated oligosaccharides as inhibitors of hyaluronidases from bovine testis, bee venom and Streptococcus agalactiae. Planta Medica, 71, 727–732.
Schmidt, J. O., Blum,M. S.,&Overal,W.L. (1986). Comparative enzymology ofvenoms from stinging Hymenoptera. Toxicon, 24, 907–921.
Schmith, K., & Faber, V. (1950). The turbidimetric method for determination of hyaluronidase. Scandinavian Journal of Clinical and Laboratory Investigation, 2, 292–297.
Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P., & Bork, P. (2000). SMART: A webbased tool for the study of genetically mobile domains. Nucleic Acids Research, 28, 231–234.
Schwartz, D. M., Shuster, S., Jumper, M. D., Chang, A., & Stern, R. (1996). Human vitreous hyaluronidase: Isolation and characterization. Current Eye Research, 15, 1156–1162.
Scott, J. E. (1955). The reaction of long-chain quarternary ammonium salts with acidic polysaccharides. Chemistry and Industry, 168–169.
Scott, J. E., & Heatley, F. (1999). Hyaluronan forms specific stable tertiary structures in aqueous solution: A 13C NMR study. Proceedings of the National Academy of Sciences USA, 96, 4850–4855.
Scott, J. E., & Heatley, F. (2002). Biological properties of hyaluronan in aqueous solution are controlled and sequestered by reversible tertiary structures, defined by NMR spectroscopy. Biomacromolecules, 3, 547–553.
Scott, J. E., Heatley, F., & Hull, W. E. (1984). Secondary structure of hyaluronate in solution. A 1Hn. m.r. investigation at 300 and 500MHz in 2H6 dimethyl sulphoxide solution. Biochemical Journal, 220, 197–205.
Scott, J. E., Cummings, C., Brass, A., & Chen, Y. (1991). Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowingelectron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. Biochemical Journal, 274, 699–705.
Senn, A., Germond, M., & De Grandi, P. (1992). Immunofluorescence study of actin, acrosin, dynein, tubulin and hyaluronidase and their impact on in-vitro fertilization. Human Reproduction, 6, 841–849.
Skov, L. K., Seppala, U., Coen, J. J., Crickmore, N., King, T. P., Monsalve, R., et al. (2006). Structure of recombinant Ves v 2 at 2.0 Angstrom resolution: structural analysis of an allergenic hyaluronidase from wasp venom. Acta Crystallogica D. Biological Crystallogry, 62, 595–604.
Spruss, T., Bernhardt, G., Schönenberger, H., & Schiess, W. (1995). Hyaluronidase significantly enhances the efficacy of regional vinblastine chemotherapy of malignant melanoma. Journal of Cancer Research and Clinical Oncology, 121, 193–202.
Steiner, B., & Cruce, D. (1992). A zymographic assay for detection of hyaluronidase activity on polyacrylamide gels and its application to enzymatic activity found in bacteria. Analytical Biochemistry, 200, 405–410.
Stern, R. (2004). Hyaluronan catabolism:Anewmetabolic pathway. European Journal of Cell Biology, 83, 317–325.
Stern, R. (2005). Hyaluronan Metabolism: A major paradox in cancer biology. Pathologie Biologie (Paris), 53, 372–382.
Stern, R., & Jedrzejas, M. J. (2006). Hyaluronidases: Their genomics structures, and mechanism of action. Chemical Reviews, 106, 818–839.
Stern, M., & Stern, R. (1992). AnELISA-like assay for hyaluronidase and hyaluronidase inhibitors. Matrix, 12, 397–403.
Sting, R., Schaufuss, P., & Blobel, H. (1990). Isolation and characterization of hyaluronidases from Streptococcus dysgalactiae. S. zooepidemicus and S. equi. Zentralbl Bakteriol Parasitenkd Infektionskr Hygiene, 272, 276–282.
Sugahara, K., Yamada, S., Sugiura, M., Takeda, K., Yuen, R., Khoo, H. E., et al. (1992). Identification of the reaction products of the purified hyaluronidase from stonefish (Synanceja horrida) venom. Biochemical Journal, 283, 99–104.
Suzuki, K., Terasaki, Y., & Uyeda, M. (2002). Inhibition of hyaluronidases and chondroitinases by fatty acids. Journal of Enzyme Inhibition Medicinal Chemistry, 17, 183–186.
Takagaki, K., Nakamura, T., Izumi, J., Saitoh, H., Endo, M., Kojima, K., et al. (1994). Characterisation of hydrolysis and transglycosylation by testicular hyaluronidase using ionspray mass spectrometry. Biochemistry, 33, 6503–6507.
Takagaki, K., Nakamura, T., Izumi, J., Saitoh, H., & Endo, M. (1994). Characterization of hydrolysis and transglycosylation by testicular-hyaluronidase using ion-spray mass spectrometry. Biochemistry, 33, 6503–6507.
Takahashi, T., Sugahara, T., & Ohsaka, A. (1974). Purification of Clostridium perfringens phospholipase C (alpha-toxin) by affinity chromatography on agarose-linked egg-yolk lipoprotein. Biochimica et Biophysica Acta, 10, 155–171.
Takahashi, T., Ikegami-Kawai, M., Okuda, R., & Suzuki, K. (2003). A fluorimetric Morgan–Elson assay method for hyaluronidase activity. Analytical Biochemistry, 322, 257–263.
Talbot, P., Geiske, C., & Knoll, M. (1999). Oocyte pickup by the mammalian oviduct. Molecular Biology of the Cell, 10, 5–8.
Tan, N. H., & Ponnudurai, G. (1992a). Comparative study of the enzymatic, hemorrhagic, procoagulant and anticoagulant activities of some animal venoms. Comparative Biochemistry and Physiology, 103, 299–302.
Tan, N. H., & Ponnudurai, G. (1992b). The biological Properties of venoms of some American coral snakes (genus Micrurus). Comparative Biochemistry and Physiology, 101, 471–474.
Terwisscha van Scheltinga, A. C., Armand, S., Kalk, K. H., Isogai, A., Henrissat, B., & Dijkstra, B. W. (1995). Stereochemistry of chitin hydrolysis by a plant chitinase/ lysozyme and X-ray structure of a complex with allosamidin: Evidence for substrate assisted catalysis. Biochemistry, 34, 15619–15623.
Thaler, C. D., & Cardullo, R. A. (1995). Biochemical characterization of a glycosylphosphatidyl-inositol-linked hyaluronidase on mouse sperm. Biochemistry, 34, 7788–7795.
Toida, T., Ogita, Y., Suzuki, A., Toyoda, H., & Imanari, T. (1999). Inhibition of hyaluronidase by fully O-sulfonated glycosaminoglycans. Archives of Biochemistry and Biophysics, 370, 176–182.
Tolksdorf, S., McReady, M. H., McCullagh, D. R., & Schwenk, E. (1949). The turbidimetric assay of hyaluronidase. Journal of Laboratory and Clinical Medicine, 34, 74–89.
Toole, B. P. (2001). Hyaluronan in morphogenesis. Seminars in Cell and Developmental Biology, 12, 79–87.
Toole, B. P. (2002). Hyaluronan promotes the malignant phenotype. Glycobiology, 12, 37–42.
Toole, B. P. (2004). Hyaluronan: From extracellular glue to pericellular cue. Nature Reviews in Cancer, 4, 528–539.
Toole, B. P., Biswas, C., & Gross, J. (1979). Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proceedings of the National Academy of Sciences USA, 76, 6299–6303.
Toole, B. P., Wight, N. T., & Tammi, M. L. (2002). Hyaluronan–cell interactions in cancer and vascular disease. Journal of Biological Chemistry, 277, 4593–4596.
Tu, A. T., & Hendon, R. R. (1983). Characterization of lizard venom hyaluronidase and evidence for its action as a spreading facto. Comparative Biochemistry and Physiology, 76, 377–383.
Turner, R. E., & Cowman, M. K. (1985). Cationic dye binding by hyaluronate fragments: Dependence on hyaluronate chain length. Archives of Biochemistry and Biophysics, 237, 253 260.
Vercruysse, K. P., Lauwers, A. R., & Demeester, J. M. (1994). Kinetic investigation of the degradation of hyaluronan by hyaluronidase using gel permeation chromatography. Journal of Chromatography B and Biomedical Applications, 656, 179–190.
Vercruysse, K. P., Lauwers, A. R., & Demeester, J. M. (1995). Absolute and empirical determination of the enzymatic activity and kinetic investigation of the action of hyaluronidase on hyaluronan using viscosimetry. Biochemical Journal, 306, 153–160.
Vesterberg, O. (1968). Studies on extracellular proteins from Staphylococcus aureus. 3. Investigations on the heterogeneity of hyaluronate lyase using the method of isoelectric focusing. Biochimica et Biophysica Acta, 168, 218–227.
Vigdorovich, V., Miller, A. D., & Strong, R. K. (2005). Expression and characterization of a soluble, active form of the jaagsiekte sheep retrovirus receptor, Hyal2. Journal of Virology, 79, 79–86.
Vigdorovich, V., Miller, A. D., & Strong, R. K. (2007). Ability of hyaluronidase 2 to degrade extracellular hyaluronan is not required for its function as a receptor for Jaagsiekte sheep retrovirus. Journal of Virology, 81, 3124–3129.
Vincent, J.-C., & Lenormand, H. (2009). How hyaluronan–protein complexes modulate the hyaluronidase activity: The model. Biophysical Chemistry, 145, 126–134.
Weissman, B. (1955). The transglycosylative action of testicular hyaluronidase. Journal of Biological Chemistry, 216, 783–794. “http://glycob.oxfordjournals. org/cgi/content/full/8/7/719” \l “bbr27 1#bbr27 1”
West, D. C., Hampson, I. N., Arnold, F., & Kumar, S. (1985). Angiogenesis induced by degradation products of hyaluronic acid. Science, 228, 1324–1326.
Wright, R. P., Elgert, K. D., Campbell, B. J., & Barrett, J. T. (1973). Hyaluronidase and esterase activities of the venom of the poisonous brown recluse spider. Archives of Biochemistry and Biophysics, 159, 415–426.
Yanagimachi, R. (1994). Mammalian fertilization. In E. Knobil, & J. D. Neill (Eds.), The physiology of reproduction (2nd ed., vol. 1, pp. 189–317). New York: Raven Press.
Yang, P., & Lee, C. (2006). Purification of recombinant hyaluronan lyase of Streptococcus pyogenes bacteriophage H4489A expressed in Escherichia coli and its application for the specific determination of hyaluronan concentration. Carbohydrate Polymers, 65, 159–164.
Yudin, A. I., Li, M. W., Robertson, K. R., Cherr, G. N., & Overstreet, J. W. (2001). Characterisation of the active site of monkey sperm hyaluronidase. Reproduction, 121, 735–743.
Zhang, L., Underhill, C. B., & Chen, L. (1995). Hyaluronan on the surface of tumor cells is correlated with metastatic behavior. Cancer Research, 55, 428–433.
Zhang, L., Bharadwaj, A. G., Casper, A., Barkley, J., Barycki, J. J.,& Simpson, M. A. (2009). Hyaluronidase activity of human Hyal1 requires active site acidic and tyrosine residues. Journal of Biological Chemistry, 284, 9433–9442.

QR CODE