簡易檢索 / 詳目顯示

研究生: AYU SHOLIKHAH
AYU SHOLIKHAH
論文名稱: 鋼管內充填混凝土柱之軸向與撓曲行為分析與性能評估方法研究
Research of Numerical Modelling and Estimation Methods of the Axial and Flexural Performance of Concrete Filled Steel Tubular Columns
指導教授: 蕭博謙
Po-Chien Hsiao
口試委員: 張大鵬
Ta-Peng Chang
Marnie Becios Giduquio
Marnie Becios Giduquio
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 178
外文關鍵詞: concrete filled steel tubular columns (CFST), confined concrete, axial load, flexure load
相關次數: 點閱:121下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究對鋼管混凝土柱(Concrete Filled Steel Tubular Columns, CFST)之性能進行數值分析,其中也包含了混凝土的圍束效應。由於目前實驗中測量及觀察仍然難以闡明鋼管混凝土之應力應變行為,因此需要對此使用數值建模分析進行研究。然而,數值模型需要廣泛且逐筆案例討論參數校準才能與實驗結果相互比較。此篇研究對軸向和撓曲性能進行了全面的參數化研究,其中在管徑與厚度比(D/t)、圍束因子(ξ)、側向圍壓(f_rp)以及軸向載荷比(n)皆有廣泛的參數討論,以研究和開發具有代表性的鋼管混凝土的材料模型,並以此模型進行在單調軸向、撓曲載荷以及循環撓曲載荷下的數值模型分析和評估。透過實驗驗證數值模型後,基於此模型開發了一組用於預估CFST之圍束強度、應變–應力、P-M曲線之估計公式。


    A numerical study was performed on the behavior of Concrete Filled Steel Tubular Columns (CFST) including confined effect of concrete. There is a need to conduct investigation using numerical modelling approaches due to that the experimental measurements and observations somehow were still hard for clarifying the stress and strain behavior of the infilled concrete and the steel tube. However, numerical models require extensive and case-by-case parametric calibration to match with experimental results. The study conducted comprehensive parametric studies on the axial and flexural behavior with a wide variation of the D/t ratio, confinement factor, the lateral confining pressure, and axial load ratio to investigate and developed the representable material model of the filled concrete and steel tube. The analysis of the numerical model under monotonic axial and flexure loads, as well as cyclic flexure loads were performed and evaluated. Based on the experimental validations of the numerical models, a set of estimation equations for predicting the CFST confined strength, stress-strain, P-M interaction curves were developed.

    Abstract ii Chinese Abstract iii Acknowledgment iv Table of Contents v List of Tables ix List of Figures x List of Notations xix CHAPTER 1 INTRODUCTION 1 1.1. Research Background 1 1.2. Scope and Objectives 2 1.3. The Structure of the Thesis 3 CHAPTER 2 LITERATURE REVIEW 6 2.1. Numerical Studies of Material Models upon Finite Element Methods (FEM) and Fiber Element Methods (FBE) 6 2.1.1. Material Models of Finite Element Methods (FEM) under Monotonic Loading 6 2.1.2. Material Models of Fiber Element Methods (FBE) under Cyclic Loading 8 2.2. Numerical Studies of Confined Concrete 9 2.3. Concrete Filled Steel Tubular Columns under Monotonic Axial and Flexural Load 11 2.4. Concrete Filled Steel Tubular Columns Members under Combined Axial and Cyclic Flexural Loads 12 2.5. CFST Design Provisions 12 2.5.1. AISC 1999 [23] and AISC 360-10 [24] 12 2.5.2. CIDECT 1995 [25] 14 2.5.3. GB50936-China 2014 Provisions [26] 14 2.5.4. Eurocode-4 [27] 15 CHAPTER 3 DEVELOPMENT AND VERIFICATION OF NUMERICAL MODELS 22 3.1. Introduction 22 3.2. Methodology 22 3.3. Finite Element Model Validation under Monotonic Loading 23 3.3.1. Element Type 23 3.3.2. Meshing and Contact Model of FEM 23 3.3.3. Boundary Conditions and Constraints 24 3.3.4. Material Model of CFST 25 3.3.5. FEM Validation of CFST 26 3.4. Fiber Element Method Validation under Cyclic Loading 28 3.4.1. Fiber Element Discretization and Boundary Condition 28 3.4.2. Material Stress-Strain Curve of Fiber Element Method 29 3.4.3. Loading Sequence of Cyclic Loading 29 3.4.4. Model Verification of Fiber Element Method 29 CHAPTER 4 PARAMETRIC STUDY 76 4.1. Introduction 76 4.2. Analysis Strength of Confined Concrete under Monotonic Load 76 4.2.1. The Effect of Confinement on Monotonic Load 77 4.2.2. The Effect of Lateral Confining Pressure 78 4.2.3. Propose Equation Strength of Confined Concrete 79 4.3. Development of the Stress-Strain Curve Composite on Fiber Element Method 80 4.3.1. The Effect of Axial Load Ratio 81 4.3.2. The Effect of D/t, B/t and Daverage/t 82 4.3.3. The Effect of Lateral Confining Pressure 82 4.3.4. Propose Equation of Compressive Strength Ratio 83 4.3.5. Proposed Equation Ratio of Strain Confined 83 4.3.6. Validation of the Stress-Strain Curve Composite 84 4.4. P-M Interaction of CFST 84 4.4.1. Development of Update P-M Interaction Equations Composite 85 4.4.2. Verification of Update P-M Interaction Equations for Composite 87 4.5. Update Simplified Model of Moment-Rotation Relationship 87 4.5.1. Propose Equation of Moment Ultimate CFST 88 4.5.2. The Effect of Axial Load Ratio , D/t, and of 89 4.5.3. Propose Equation of Moment-Rotation Relationship 89 4.5.4. Verification of the Propose Equation Moment-Rotation Relationship 90 CHAPTER 5 CONCLUSIONS and SUGGESTIONS 146 5.1. Conclusions 146 5.2. Suggestions for Future Work 147 REFERENCES 149

    [1] L. H. Han, W. Li, and R. Bjorhovde, “Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members,” J Constr Steel Res, vol. 100, pp. 211–228, 2014, doi: 10.1016/j.jcsr.2014.04.016.
    [2] S. P. Schneider and A. Member, “AXIALLY LOADED CONCRETE-FILLED STEEL TUBES,” J. Struct Eng. 124 (10): 1125-1138, 1998.
    [3] C. S. Huang et al., “Axial Load Behavior of Stiffened Concrete-Filled Steel Columns,” JOURNAL OF STRUCTURAL ENGINEERING, vol. 128, no. 9 ISSN 0733-9445/2002/9–1222–123, pp. 1222–1230, Sep. 2002, doi: 10.1061/ASCE0733-94452002128:91222.
    [4] L. H. Han, Y. F. Yang, and Z. Tao, “Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading,” Thin-Walled Structures, vol. 41, no. 9, pp. 801–833, Sep. 2003, doi: 10.1016/S0263-8231(03)00030-2.
    [5] L. H. Han, H. Lu, G. H. Yao, and F. Y. Liao, “Further study on the flexural behaviour of concrete-filled steel tubes,” J Constr Steel Res, vol. 62, no. 6, pp. 554–565, Jun. 2006, doi: 10.1016/j.jcsr.2005.09.002.
    [6] Q. Yu, Z. Tao, W. Liu, and Z. B. Chen, “Analysis and calculations of steel tube confined concrete (STCC) stub columns,” J Constr Steel Res, vol. 66, no. 1, pp. 53–64, Jan. 2010, doi: 10.1016/j.jcsr.2009.08.003.
    [7] T. Yamamoto, K. A. Waguchi, and S. Morino, “EXPERIMENTAL STUDY OF SCALE EFFECTS ON THE COMPRESSIVE BEHAVIOR OF SHORT CONCRETE-FILLED STEEL TUBE COLUMNS,” Composite Constructional in Steel and Concrete, 2000.
    [8] Q. Q. Liang and S. Fragomeni, “Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading,” J Constr Steel Res, vol. 65, no. 12, pp. 2186–2196, Dec. 2009, doi: 10.1016/j.jcsr.2009.06.015.
    [9] J. B. Mander, M. J. N. Priestley, and R. Park, “THEORETICAL STRESS-STRAIN MODEL FOR CONFINED CONCRETE,” Journal of Structural Engineering, Vol.114, No.8, August, 1988. @ASCE, 1988.
    [10] ABAQUS, “Abaqus/CAE User’s Guide,” Abaqus/CAE User’s Guide Abaqus 6.13. United State of America (USA): Dassault Systèmes Simulia Corp, 2013.
    [11] X. Dai and D. Lam, “Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns,” J Constr Steel Res, vol. 66, no. 7, pp. 931–942, 2010, doi: 10.1016/j.jcsr.2010.02.003.
    [12] B. Peter Baltay and A. Gjelsvik, “COEFFICIENT OF FRICTION FOR STEEL ON CONCRETE AT HIGH NORMAL STRESS,” Journal of Materials in Civil Engineering, Vol.2, No.1, February, ASCE, 1990.
    [13] P. Ayough, Z. Ibrahim, N. H. R. Sulong, and P. C. Hsiao, “The effects of cross-sectional shapes on the axial performance of concrete-filled steel tube columns,” J Constr Steel Res, vol. 176, Jan. 2021, doi: 10.1016/j.jcsr.2020.106424.
    [14] Z. Tao, Z. bin Wang, and Q. Yu, “Finite element modelling of concrete-filled steel stub columns under axial compression,” J Constr Steel Res, vol. 89, pp. 121–131, 2013, doi: 10.1016/j.jcsr.2013.07.001.
    [15] R. Wang, L. H. Han, J. G. Nie, and X. L. Zhao, “Flexural performance of rectangular CFST members,” Thin-Walled Structures, vol. 79, pp. 154–165, 2014, doi: 10.1016/j.tws.2014.02.015.
    [16] T. Yu, J. G. Teng, Y. L. Wong, and S. L. Dong, “Finite element modeling of confined concrete-II: Plastic-damage model,” Eng Struct, vol. 32, no. 3, pp. 680–691, Mar. 2010, doi: 10.1016/j.engstruct.2009.11.013.
    [17] P. Kmiecik and M. Kamiński, “Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration,” 2011.
    [18] E.-T. S, “Evaluation of ACI 318 and AISC (LRFD) Strength Provisions for Composite Beam-Columns,” J.Construc. Steel Research 34 (103-123), 1995.
    [19] Q. Q. Liang, B. Uy, and J. Y. Richard Liew, “Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects,” J Constr Steel Res, vol. 62, no. 6, pp. 581–591, Jun. 2006, doi: 10.1016/j.jcsr.2005.09.007.
    [20] E. Spacone, F. C. Filippou, and F. F. Taucer, “Fibre beam-column model for non-linear analysis of R/C frames: Part I. Formulation,” Earthq Eng Struct Dyn, vol. 25, no. 7, pp. 711–725, 1996, doi: 10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9.
    [21] G. Monti, E. Spacone, and A. Member, “REINFORCED CONCRETE FIBER BEAM ELEMENT WITH BOND-SLIP,” Journal of Structural Engineering, Vol.126, No. 6, June, 2000.ASCE, ISSN 0733-9445/00/0006-0654–0661.
    [22] T. Wang and T. T. C. Hsu, “Nonlinear Finite element analysis of concrete structures using new constitutive models,” Computers and Structures 79 (2001) 2781-2791. [Online]. Available: www.elsevier.com/locate/compstruc
    [23] AISC, “Specification for Structural Steel Buildings Allowable Stress Design and Plastic Design Junel, 1989 with Commentary,” Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction Inc., Chicago, 1999.
    [24] AISC, “Specification for Structural Steel Buildings Supersedes the Specification for Structural Steel Buildings dated and all previous versions Approved by the Committee on Specifications,” Specification for Structural Steel Buildings, ANSI/AISC 360-16. Chicago, Illinois: American Institute of Steel Construction (AISC), 2016.
    [25] D. D. N. Y. J. Wardenier, “Design Guide for Structural Hollow Sections in Mechanical Applications,” 1995.
    [26] GB50936-2014, “Technical Code for Concrete Filled Steel Tubular Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, China Architecture & Building Press, Beijing,” 2014.
    [27] Eurocode 4 (EC4), “EN 1995-1-2: Eurocode 5: Design of timber structures - Part 1-2: General - Structural fire design,” Design of Composite Steel and Concrete Structures—Part-1: General Rules and Rules for Building, CEN, . Brussels, 2004, 2005.
    [28] L. H. Han, G. H. Yao, and Z. Tao, “Performance of concrete-filled thin-walled steel tubes under pure torsion,” Thin-Walled Structures, vol. 45, no. 1, pp. 24–36, Jan. 2007, doi: 10.1016/j.tws.2007.01.008.

    QR CODE