簡易檢索 / 詳目顯示

研究生: Yonas Beyene Yohannes
Yonas Beyene Yohannes
論文名稱: Anode Solid Electrolyte Interphase Formation in the presence of FEC: an In-Situ Infrared Spectroscopic Study
Anode Solid Electrolyte Interphase Formation in the presence of FEC: an In-Situ Infrared Spectroscopic Study
指導教授: 林昇佃
Shawn D. Lin
口試委員: 黃炳照
Bing-Joe Hwang
陳崇賢
Chorng-Shyan Chern
吳乃立
Nae-Lih Wu
蘇威年
Wei-Nien Su
吳溪煌
She-huang Wu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 131
中文關鍵詞: In-situDRIFTSSolid Electrolyte InterphaseSi-basedMCMB-anodeFEC-additiveLi-ion battery
外文關鍵詞: In-situ, DRIFTS, Solid Electrolyte Interphase, Si-based, MCMB-anode, FEC-additive, Li-ion battery
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The Solid Electrolyte Interphase (SEI) forms on electrodes of most Li-ion batteries (LiBs), but its formation mechanism and the properties that may govern the performance of LiBs are a mystery. The goal of this dissertation is to understand SEI growth by examining the formation of interface layer using in situ infrared spectroscopy. We focus on the role of fluoroethylene carbonate (FEC) on both silicon-based and carbon anodes.
    At first, the effect of FEC additive on the formation of SEI over Si-based anode is studied using in-situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy). SEI species were observed at an onset potential of 1.4 V in the first lithiation cycle using an electrolyte containing 2 wt% vinylene carbonate (VC) + 10 wt% FEC and at 1.1 V in an electrolyte without FEC additive. With blended VC and FEC, high carbon containing species including poly (FEC), poly (VC), and polycarbonates were identified, while poly (VC) and polycarbonates formed in the absence of FEC. The FEC additive also lead to a higher content of organic phosphorous fluorides as compared to the electrolyte containing no FEC. Electrochemical analyses indicated that the combination of 2 wt% VC and 10 wt% FEC resulted in lower impedances and improved the stability of the Si-electrode through cycling as compared to that without FEC. DRIFTS provided evidence that similar SEI species formed continuously after the initiation in the first cycle, and this formation was recorded for five cycles.
    For the second part, the effect of VC and FEC on SEI formation on MCMB anodes in Li-ion batteries is studied. Incorporation of 2 wt% VC into standard electrolyte (1 M LiPF6 in ethylene carbonate (EC)/ ethyl methyl carbonate (EMC), (1:2)) results in the generation of poly (VC), polycarbonates and Li2CO3 at an onset of 1.0 V. Incorporation of VC inhibits the generation of lithium alkyl carbonates. Lithium alkyl carbonate, poly (FEC), poly (VC), Li2CO3 and organic phosphorous fluorides species are formed when 5 wt% FEC is incorporated with standard electrolyte. The reduction of FEC is responsible for the formation of a surface film resulting in a lower impedance compared with the electrolyte containing 2 wt% VC. The continuous formation of SEI is also observed over MCMB when with 2% VC or with 5% FEC additive is included in the electrolyte.
    We propose a chain transfer mechanism leading to the continuous SEI formation after its initiation in the first cycle. A radical trapping reagent, 2,2,6,6-tetramethylpiperinyl-oxide (TEMPO), is included to test the proposed model. Using this new additive with 1 M LiPF6/EC:EMC + 5 wt% FEC base electrolyte, the continuous SEI formation on MCMB-electrode can be stopped. The insight towards the nature of the SEI formation by FEC on anode electrodes is discussed.


    The Solid Electrolyte Interphase (SEI) forms on electrodes of most Li-ion batteries (LiBs), but its formation mechanism and the properties that may govern the performance of LiBs are a mystery. The goal of this dissertation is to understand SEI growth by examining the formation of interface layer using in situ infrared spectroscopy. We focus on the role of fluoroethylene carbonate (FEC) on both silicon-based and carbon anodes.
    At first, the effect of FEC additive on the formation of SEI over Si-based anode is studied using in-situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy). SEI species were observed at an onset potential of 1.4 V in the first lithiation cycle using an electrolyte containing 2 wt% vinylene carbonate (VC) + 10 wt% FEC and at 1.1 V in an electrolyte without FEC additive. With blended VC and FEC, high carbon containing species including poly (FEC), poly (VC), and polycarbonates were identified, while poly (VC) and polycarbonates formed in the absence of FEC. The FEC additive also lead to a higher content of organic phosphorous fluorides as compared to the electrolyte containing no FEC. Electrochemical analyses indicated that the combination of 2 wt% VC and 10 wt% FEC resulted in lower impedances and improved the stability of the Si-electrode through cycling as compared to that without FEC. DRIFTS provided evidence that similar SEI species formed continuously after the initiation in the first cycle, and this formation was recorded for five cycles.
    For the second part, the effect of VC and FEC on SEI formation on MCMB anodes in Li-ion batteries is studied. Incorporation of 2 wt% VC into standard electrolyte (1 M LiPF6 in ethylene carbonate (EC)/ ethyl methyl carbonate (EMC), (1:2)) results in the generation of poly (VC), polycarbonates and Li2CO3 at an onset of 1.0 V. Incorporation of VC inhibits the generation of lithium alkyl carbonates. Lithium alkyl carbonate, poly (FEC), poly (VC), Li2CO3 and organic phosphorous fluorides species are formed when 5 wt% FEC is incorporated with standard electrolyte. The reduction of FEC is responsible for the formation of a surface film resulting in a lower impedance compared with the electrolyte containing 2 wt% VC. The continuous formation of SEI is also observed over MCMB when with 2% VC or with 5% FEC additive is included in the electrolyte.
    We propose a chain transfer mechanism leading to the continuous SEI formation after its initiation in the first cycle. A radical trapping reagent, 2,2,6,6-tetramethylpiperinyl-oxide (TEMPO), is included to test the proposed model. Using this new additive with 1 M LiPF6/EC:EMC + 5 wt% FEC base electrolyte, the continuous SEI formation on MCMB-electrode can be stopped. The insight towards the nature of the SEI formation by FEC on anode electrodes is discussed.

    Abstract ... i Acknowledgments... iii Table of Contents... v List of Figures... viii List of Tables... xii List of Schemes... xiv List of Abbreviations... xv Chapter 1 Literature Review... 1 1.1. Lithium Ion Battery... 1 1.2. Electrolyte Solutions in Li-ion Battery.... 6 1.2.1. Carbonate Solvents and Li-Salts... 7 1.2.2. Electrolyte Additives... 11 1.3. Electrode/Electrolyte Interface in Li-ion Batteries... 15 1.3.1. Solid Electrolyte Interphase Formation on... 17 1.3.2. Electrochemical Reactions at the Interface of Si/MCMB Electrodes... 21 1.3.3. Techniques for the Analysis of SEI... 29 1.4. Motivation and Aim of the Current Work... 32 Chapter 2 Experimental Section... 34 2.1. Preparation of Electrodes and Coin Cells... 34 Table of Contents vi 2.2. Electrolyte Compositions... 35 2.3. Electrochemical Characterization... 36 2.4. In-situ DRIFTS Characterization... 36 Chapter 3 In Situ DRIFTS Analysis of Solid Electrolyte Interphase of Si-based anode with and without Fluoroethylene Carbonate Additive... 38 3.1. Motivation... 38 3.2. Results and Discussion... 40 3.2.1. Electrochemical Behaviour... 40 3.2.2. DRIFTS Spectra at Open Circuit Potential (OCP)... 46 3.2.3. DRIFTS Spectra during Electrochemical Cycling... 48 3.3. Summary ... 61 Chapter 4 In Situ DRIFTS Analysis of Solid Electrolyte Interphase of MCMB Anode formed in Vinylene Carbonate and Fluoroethylene Carbonate containing Electrolytes ... 63 4.1. Motivation... 63 4.2. Results and Discussion... 64 4.2.1. Electrochemical Behavior... 64 4.2.2. DRIFTS Spectra at Open Circuit Potential (OCP) ........................................... 67 4.2.3. DRIFTS Spectra during Electrochemical Cycling ........................................... 69 4.3. Summary... 77 Chapter 5 The effect of 2,2,6,6-tetramethylpiperidinyl-oxide (TEMPO) as an Electrolyte Additive and its SEI formation on MCMB-electrode... 78 5.1. Motivation... 78 Table of Contents vii 5.2. Results and Discussion... 79 5.2.1. Electrochemical Behavior... 79 5.2.2. DRIFTS Spectra during Electrochemical Cycling... 80 5.3. Summary... 89 Chapter 6 General Conclusions... 90 Chapter 7 Recommendations and Future Research... 93 References... 94 Appendices... 109 Appendix A Voltage profiles of the selected lithiation-delithiation cycle of Si-based electrodes... 109 Appendix B In-situ DRIFTS spectrum during charging... 110 Publications... 111

    [1] D. Larcher, J.-M. Tarascon, Nature chemistry, 7 (2015) 19-29.
    [2] H. Ibrahim, A. Ilinca, J. Perron, Renewable and Sustainable Energy Reviews, 12 (2008) 1221-1250.
    [3] H. Yoo, E. Markevich, G. Salitra, D. Sharon, D. Aurbach, Mater. Today, 17 (2014) 110-121.
    [4] D. Guyomard, J.M. Tarascon, Adv. Mater., 6 (1994) 408-412.
    [5] H. Armand, in, Plenum, 1980.
    [6] J.B. Goodenough, K.-S. Park, J. Am. Chem. Soc., 135 (2013) 1167-1176.
    [7] J.B. Goodenough, Acc. Chem. Res., 46 (2013) 1053-1061.
    [8] N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Angew. Chem. Int. Ed., 51 (2012) 9994-10024.
    [9] B. Dunn, H. Kamath, J.-M. Tarascon, Science, 334 (2011) 928-935.
    [10] D. Guyomard, J. Tarascon, J. Electrochem. Soc., 139 (1992) 937-948.
    [11] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy & Environmental Science, 4 (2011) 3243-3262.
    [12] R. Marom, F.S. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem., 21 (2011) 9938-9954.
    [13] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Electrochim. Acta, 50 (2004) 247-254.
    [14] K. Xu, Chem. Rev., 104 (2004) 4303-4418.
    [15] J.B. Goodenough, Y. Kim, Chem. Mater., 22 (2010) 587-603.
    [16] K. Xu, Chem. Rev., 114 (2014) 11503-11618.
    [17] D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten, M. Schmidt, J. Electrochem. Soc., 147 (2000) 1322-1331.
    [18] S. Zhang, J. Power Sources, 162 (2006) 1379-1394.
    [19] M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, R.J. Staniewicz, J. Power Sources, 146 (2005) 90-96.
    [20] P. Arora, R.E. White, M. Doyle, J. Electrochem. Soc., 145 (1998).
    [21] S. Dalavi, P. Guduru, B.L. Lucht, J. Electrochem. Soc., 159 (2012).
    [22] N.-S. Choi, K. Yew, K. Lee, M. Sung, H. Kim, S.-S. Kim, J. Power Sources, 161 (2006) 1254-1259.
    [23] L. Martin, H. Martinez, M. Ulldemolins, B. Pecquenard, F. Le Cras, Solid State Ionics, 215 (2012) 36-44.
    [24] D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, Electrochim. Acta, 47 (2001) 1423-1439.
    [25] L. Chen, K. Wang, X. Xie, J. Xie, J. Power Sources, 174 (2007) 538-543.
    [26] H. Nakai, T. Kubota, A. Kita, A. Kawashima, J. Electrochem. Soc., 158 (2011).
    [27] K.W. Schroder, H. Celio, L.J. Webb, K.J. Stevenson, The Journal of Physical Chemistry C, 116 (2012) 19737-19747.
    [28] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Langmuir, 28 (2011) 965-976.
    [29] Y.-M. Lin, K.C. Klavetter, P.R. Abel, N.C. Davy, J.L. Snider, A. Heller, B.C. Mullins, Chem. Commun., 48 (2012) 7268-7270.
    [30] K. Xu, A. von Cresce, J. Mater. Chem., 21 (2011) 9849-9864.
    [31] E. Peled, J. Electrochem. Soc., 126 (1979) 2047-2051.
    [32] E. Peled, D. Golodnitsky, G. Ardel, J. Electrochem. Soc., 144 (1997) L208-L210.
    [33] N. Takenaka, Y. Suzuki, H. Sakai, M. Nagaoka, J. Phys. Chem. C, 118 (2014) 10874-10882.
    [34] P. Ganesh, P.R.C. Kent, D.-e. Jiang, J. Phys. Chem. C, 116 (2012) 24476-24481.
    [35] J. Yan, J. Zhang, Y.-C. Su, X.-G. Zhang, B.-J. Xia, Electrochim. Acta, 55 (2010) 1785-1794.
    [36] C.C. Nguyen, B.L. Lucht, J. Electrochem. Soc., 161 (2014).
    [37] D. Aurbach, M. Moshkovich, Y. Cohen, A. Schechter, Langmuir, 15 (1999) 2947-2960.
    [38] E. Endo, K. Tanaka, K. Sekai, J. Electrochem. Soc., 147 (2000) 4029-4033.
    [39] G.V. Zhuang, H. Yang, P.N. Ross, K. Xu, T.R. Jow, Electrochem. Solid-State Lett., 9 (2006) A64-A68.
    [40] J.-S. Bridel, S. Grugeon, S. Laruelle, J. Hassoun, P. Reale, B. Scrosati, J.-M. Tarascon, J. Power Sources, 195 (2010) 2036-2043.
    [41] K. Kanamura, S. Shiraishi, H. Takezawa, Z.-i. Takehara, Chem. Mater., 9 (1997) 1797-1804.
    [42] A. Würsig, H. Buqa, M. Holzapfel, F. Krumeich, P. Novák, Electrochem. Solid-State Lett., 8 (2005) A34-A37.
    [43] S.-B. Lee, S.-I. Pyun, Carbon, 40 (2002) 2333-2339.
    [44] J. Li, H. Li, Z. Wang, L. Chen, X. Huang, J. Power Sources, 107 (2002) 1-4.
    [45] X. Wu, H. Li, L. Chen, X. Huang, Solid State Ionics, 149 (2002) 185-192.
    [46] R. Dedryvère, H. Martinez, S. Leroy, D. Lemordant, F. Bonhomme, P. Biensan, D. Gonbeau, J.Power Sources, 174 (2007) 462-468.
    [47] K. Takei, K. Kumai, Y. Kobayashi, H. Miyashiro, T. Iwahori, T. Uwai, H. Ue, J. Power Sources, 54 (1995) 171-174.
    [48] E.L. Littauer, K.C. Tsai, J. Electrochem. Soc., 123 (1976) 964-969.
    [49] K. Kumai, H. Miyashiro, Y. Kobayashi, K. Takei, R. Ishikawa, J. Power Sources, 81 (1999) 715-719.
    [50] H. Yang, G.V. Zhuang, P.N. Ross, J. Power Sources, 161 (2006) 573-579.
    [51] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, Electrochim. Acta, 45 (1999) 67-86.
    [52] R. Dedryvère, L. Gireaud, S. Grugeon, S. Laruelle, J.-M. Tarascon, D. Gonbeau, The Journal of Physical Chemistry B, 109 (2005) 15868-15875.
    [53] P. Verma, P. Maire, P. Novák, Electrochim. Acta, 55 (2010) 6332-6341.
    [54] A.M. Andersson, K. Edström, J. Electrochem. Soc., 148 (2001).
    [55] S. Tsubouchi, Y. Domi, T. Doi, M. Ochida, H. Nakagawa, T. Yamanaka, T. Abe, Z. Ogumi, J. Electrochem. Soc., 159 (2012).
    [56] A. Bordes, K. Eom, T.F. Fuller, J. Power Sources, 257 (2014) 163-169.
    [57] X. Chen, X. Li, D. Mei, J. Feng, M.Y. Hu, J. Hu, M. Engelhard, J. Zheng, W. Xu, J. Xiao, J. Liu, J.G. Zhang, ChemSusChem, 7 (2014) 549-554.
    [58] K. Schroder, J. Alvarado, T.A. Yersak, J. Li, N. Dudney, L.J. Webb, Y. Meng, K.J. Stevenson, Chem. Mater., 27 (2015) 5531-5542.
    [59] I.A. atilova, C. Stock, A. Schmitz, S. Passerini, M. Winter, J.Power Sources, 222 (2013).
    [60] C. Shen, S. Wang, Y. Jin, W.-Q. Han, ACS applied materials & interfaces, 7 (2015) 25441-25447.
    [61] H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, J. Electrochem. Soc., 151 (2004) A1659-A1669.
    [62] H. Ota, K. Shima, M. Ue, J.-i. Yamaki, Electrochim. Acta, 49 (2003) 565-572.
    [63] H. Jo, J. Kim, D.-T. Nguyen, K. Kang, D.-M. Jeon, A.R. Yang, S.-W. Song, J.Phys. Chem. C, (2016).
    [64] M.-H. Ryou, G.-B. Han, Y. Lee, J.-N. Lee, D. Lee, Y. Yoon, J.-K. Park, Electrochim. Acta, 55 (2010) 2073-2077.
    [65] D. Corte, G. Caillon, C. Jordy, J.N. Chazalviel, M. Rosso, F. Ozanam, Adv. Energy Mater., 6 (2016) 1501768.
    [66] Z.-C. Wang, J. Xu, W.-H. Yao, Y.-W. Yao, Y. Yang, ECS Transactions, 41 (2012) 29-40.
    [67] H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani, M. Yamachi, J. Power Sources, 68 (1997) 311-315.
    [68] D. Aurbach, A. Zaban, Y. Gofer, Y.E. Ely, I. Weissman, O. Chusid, O. Abramson, J.Power Sources, 54 (1995) 76-84.
    [69] R. Dedryvère, L. Gireaud, S. Grugeon, S. Laruelle, J.M. Tarascon, D. Gonbeau, J. Phys. Chem. B, 109 (2005) 15868-15875.
    [70] M. Winter, J.O. Besenhard, Electrochim. Acta, 45 (1999).
    [71] R. Benedek, M.M. Thackeray, J.Power Sources, 110 (2002) 406-411.
    [72] W.-J. Zhang, J. Power Sources, 196 (2011) 13-24.
    [73] M. Datta, P.N. Kumta, J. Power Sources, 158 (2006) 557-563.
    [74] C.K. Chan, R. Ruffo, S. Hong, R.A. Huggins, Y. Cui, J. Power Sources, 189 (2009) 34-39.
    [75] M.N. Obrovac, L. Christensen, Electrochem. Solid-State Lett., 7 (2004).
    [76] C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Chem. Soc. Rev., 39 (2010) 3115-3141.
    [77] M.N. Obrovac, L.J. Krause, J. Electrochem. Soc., 154 (2007).
    [78] S. Leroy, F. Blanchard, R. Dedryvere, H. Martinez, B. Carré, D. Lemordant, D. Gonbeau, Surf. Interface Anal., 37 (2005) 773-781.
    [79] A.M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, K. Edström, J. Power Sources, 119 (2003) 522-527.
    [80] D. Aurbach, J. Electrochem. Soc., 141 (1994) 603.
    [81] R. Marom, O. Haik, D. Aurbach, I.C. Halalay, J. Electrochem. Soc., 157 (2010).
    [82] D. Aurbach, H. Gottlieb, Electrochim. Acta, 34 (1989) 141-156.
    [83] C.K. Chan, R.N. Patel, M.J. O’Connell, B.A. Korgel, Y. Cui, ACS Nano, 4 (2010) 1443-1450.
    [84] P.-L. Taberna, S. Mitra, P. Poizot, P. Simon, J.-M. Tarascon, Nature materials, 5 (2006) 567-573.
    [85] H. Wu, G. Chan, J. Choi, I. Ryu, Y. Yao, M.T. McDowell, S. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nature nanotechnology, 7 (2012) 310-315.
    [86] Z. Zeng, W.-I. Liang, H.-G. Liao, H.L. Xin, Y.-H. Chu, H. Zheng, Nano Lett., 14 (2014) 1745-1750.
    [87] F. Lindgren, C. Xu, L. Niedzicki, M. Marcinek, T. Gustafsson, F. Björefors, K. Edström, R. Younesi, ACS Appl. Mater. Interfaces, 8 (2016) 15758-15766.
    [88] T. Jaumann, J. Balach, M. Klose, S. Oswald, U. Langklotz, A. Michaelis, J. Eckert, L. Giebeler, PCCP, 17 (2015) 24956-24967.
    [89] U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources, 163 (2007) 1003-1039.
    [90] C.K. Chan, R. Ruffo, S. Hong, Y. Cui, J. Power Sources, 189 (2009) 1132-1140.
    [91] S. Laruelle, S. Pilard, P. Guenot, S. Grugeon, J.-M. Tarascon, J. Electrochem. Soc., 151 (2004) A1202-A1209.
    [92] C. Pereira-Nabais, J. Światowska, A. Chagnes, A. Gohier, S. Zanna, A. Seyeux, P. Tran-Van, C.-S. Cojocaru, M. Cassir, P. Marcus, The Journal of Physical Chemistry C, 118 (2014) 2919-2928.
    [93] C. Pereira-Nabais, J. Światowska, A. Chagnes, F. Ozanam, A. Gohier, P. Tran-Van, C.-S. Cojocaru, M. Cassir, P. Marcus, Appl. Surf. Sci., 266 (2013) 5-16.
    [94] B.M. Meyer, N. Leifer, S. Sakamoto, S.G. Greenbaum, C.P. Grey, Electrochemical and Solid-State Letters, 8 (2005) A145-A148.
    [95] Y. Wang, X. Guo, S. Greenbaum, J. Liu, K. Amine, Electrochemical and Solid-State Letters, 4 (2001) A68-A70.
    [96] M. Moshkovich, M. Cojocaru, H.E. Gottlieb, D. Aurbach, J. Electroanal. Chem., 497 (2001) 84-96.
    [97] K.C. Möller, H.J. Santner, W. Kern, S. Yamaguchi, J.O. Besenhard, M. Winter, J. Power Sources, 119 (2003) 561-566.
    [98] T. Matsushita, K. Dokko, K. Kanamura, Journal of Power Sources, 146 (2005) 360-364.
    [99] K.-i. Morigaki, A. Ohta, Journal of Power Sources, 76 (1998) 159-166.
    [100] Felix, J.-H. Cheng, S. Hy, J. Rick, F.-M. Wang, B.-J. Hwang, The Journal of Physical Chemistry C, 117 (2013) 22619-22626.
    [101] R. Sharabi, E. Markevich, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M.A. Schmidt, Electrochemical and Solid-State Letters, 13 (2010) A32-A35.
    [102] Y. Ikezawa, H. Nishi, Electrochimica Acta, 53 (2008) 3663-3669.
    [103] V. Baranchugov, E. Markevich, G. Salitra, D. Aurbach, G. Semrau, M.A. Schmidt, Journal of The Electrochemical Society, 155 (2008) A217-A227.
    [104] S. Hy, F. Felix, J. Rick, W.-N. Su, B.J. Hwang, Journal of the American Chemical Society, 136 (2014) 999-1007.
    [105] S. Chattopadhyay, A.L. Lipson, H.J. Karmel, J.D. Emery, T.T. Fister, P.A. Fenter, M.C. Hersam, M.J. Bedzyk, Chem. Mater., 24 (2012) 3038-3043.
    [106] R. Dedryvère, S. Laruelle, S. Grugeon, L. Gireaud, J.-M. Tarascon, D. Gonbeau, Journal of The Electrochemical Society, 152 (2005) A689-A696.
    [107] L. El Ouatani, R. Dedryvère, C. Siret, P. Biensan, S. Reynaud, P. Iratçabal, D. Gonbeau, Journal of The Electrochemical Society, 156 (2009) A103-A113.
    [108] G. Cherkashinin, K. Nikolowski, H. Ehrenberg, S. Jacke, L. Dimesso, W. Jaegermann, Physical Chemistry Chemical Physics, 14 (2012) 12321-12331.
    [109] A. Kominato, E. Yasukawa, N. Sato, T. Ijuuin, H. Asahina, S. Mori, Journal of Power Sources, 68 (1997) 471-475.
    [110] M. Balasubramanian, H.S. Lee, X. Sun, X.Q. Yang, A.R. Moodenbaugh, J. McBreen, D.A. Fischer, Z. Fu, Electrochemical and Solid-State Letters, 5 (2002) A22-A25.
    [111] A.M. Andersson, K. Edström, Journal of The Electrochemical Society, 148 (2001) A1100-A1109.
    [112] M. Dollé, S. Grugeon, B. Beaudoin, L. Dupont, J.M. Tarascon, Journal of Power Sources, 97–98 (2001) 104-106.
    [113] M.C. Smart, B.V. Ratnakumar, S. Surampudi, Y. Wang, X. Zhang, S.G. Greenbaum, A. Hightower, C.C. Ahn, B. Fultz, Journal of The Electrochemical Society, 146 (1999) 3963-3969.
    [114] M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, Z. Ogumi, Electrochimica Acta, 45 (1999) 99-105.
    [115] P. Lu, C. Li, E.W. Schneider, S.J. Harris, The Journal of Physical Chemistry C, 118 (2014) 896-903.
    [116] Y.-B. He, B. Li, Q.-H. Yang, H. Du, F. Kang, G.-W. Ling, Z.-Y. Tang, J. Solid State Electrochem., 15 (2011) 1977-1985.
    [117] C. Huang, K. Huang, H. Wang, S. Liu, Y. Zeng, J. Solid State Electrochem., 15 (2011) 1987-1995.
    [118] I.-J. Park, T.-H. Nam, J.-G. Kim, J. Power Sources, 244 (2013) 122-128.
    [119] C. Marino, A. Darwiche, N. Dupré, H.A. Wilhelm, B. Lestriez, H. Martinez, R. Dedryvère, W. Zhang, F. Ghamouss, D. Lemordant, L. Monconduit, The Journal of Physical Chemistry C, 117 (2013) 19302-19313.
    [120] J.K. Lee, C. Oh, N. Kim, J.-Y. Hwang, Y.-K. Sun, J. Mater. Chem. A, 4 (2016) 5366-5384.
    [121] J. Lei, L. Li, R. Kostecki, R. Muller, F. McLarnon, J. Electrochem. Soc., 152 (2005) A774-A777.
    [122] M.-S. Zheng, Q.-F. Dong, H.-Q. Cai, M.-G. Jin, Z.-G. Lin, S.-G. Sun, J. Electrochem. Soc., 152 (2005) A2207-A2210.
    [123] L. Wang, X. Deng, P.-X. Dai, Y.-G. Guo, D. Wang, L.-J. Wan, PCCP, 14 (2012) 7330-7336.
    [124] H. Tavassol, J.W. Buthker, G.A. Ferguson, L.A. Curtiss, A.A. Gewirth, J. Electrochem. Soc., 159 (2012) A730-A738.
    [125] M. Nie, D.P. Abraham, D.M. Seo, Y. Chen, A. Bose, B.L. Lucht, J.Phys. Chem. C, 117 (2013) 25381-25389.
    [126] F. Hao, Z. Liu, P.B. Balbuena, P.P. Mukherjee, J. Phys. Chem. C, (2017).
    [127] I.A. Shkrob, Y. Zhu, T.W. Marin, D. Abraham, J. Phys. Chem. C, 117 (2013) 19255-19269.
    [128] D. Aurbach, Y.S. Cohen, Identification of surface films on electrodes in non-aqueous electrolyte solutions: spectroscopic, electronic and morphological studies, Imperial College Press: London, 2004.
    [129] P. Larkin, Infrared and Raman spectroscopy: principles and spectral interpretation, Elsevier, 2017.
    [130] S.-B. Lee, S.-I. Pyun, J. Solid State Electrochem., 7 (2003) 201-207.
    [131] N. Colthup, Introduction to infrared and Raman spectroscopy, Elsevier, 2012.
    [132] T.-Y. Huang, B. Selvaraj, H.-Y. Lin, H.-S. Sheu, Y.-F. Song, C.-C. Wang, B. Hwang, N.-L. Wu, ACS Sustainable Chem. Eng., 4 (2016) 5769-5775.
    [133] A.M. Haregewoin, D.T. Shie, S.D. Lin, J.B. Hwang, M.F. Wang, ECS Transactions, 53 (2013) 23-32.
    [134] L. Batteries, Eds Nazri G.-A., Pistoia G. Boston: Kluwer Academic, 1 (2004).
    [135] J.S. Gnanaraj, R.W. Thompson, J.F. DiCarlo, K.M. Abraham, J. Electrochem. Soc., 154 (2007) A185.
    [136] M. Green, E. Fielder, B. Scrosati, M. Wachtler, J.S. Moreno, Electrochem. Solid-State Lett., 6 (2003) A75-A79.
    [137] J.H. Ryu, J.W. Kim, Y.-E. Sung, S.M. Oh, Electrochem. Solid-State Lett., 7 (2004) A306.
    [138] B. Boukamp, G. Lesh, R. Huggins, J. Electrochem. Soc., 128 (1981) 725-729.
    [139] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X. Zhang, R.A. Huggins, Y. Cui, Nature Nanotechnology, 3 (2007) 31-35.
    [140] H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem. Int. Ed., 47 (2008) 10151-10154.
    [141] M.-H. Park, M. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Nano Lett., 9 (2009) 3844-3847.
    [142] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat Mater, 9 (2010) 353-358.
    [143] M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, Z. Ogumi, J. Electrochem. Soc., 149 (2002).
    [144] J. Maranchi, A. Hepp, P. Kumta, Electrochem. Solid-State Lett., 6 (2003) A198-A201.
    [145] S. Bourderau, T. Brousse, D.M. Schleich, J. Power Sources, 81 (1999) 233-236.
    [146] J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, Electrochem. Solid-State Lett., 6 (2003).
    [147] A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, ACS Appl. Mater. Interfaces, 2 (2010) 3004-3010.
    [148] S. Xun, B. Xiang, A. Minor, V. Battaglia, G. Liu, J. Electrochem. Soc., 160 (2013).
    [149] B. Koo, H. Kim, Y. Cho, K. Lee, N.S. Choi, J. Cho, Angew. Chem. Int. Ed., 51 (2012) 8762-8767.
    [150] C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T. Gustafsson, Chem. Mater., 27 (2015) 2591-2599.
    [151] R. Jung, M. Metzger, D. Haering, S. Solchenbach, C. Marino, N. Tsiouvaras, C. Stinner, H.A. Gasteiger, Journal of The Electrochemical Society, 163 (2016).
    [152] R. Petibon, V.L. Chevrier, C.P. Aiken, D.S. Hall, S.R. Hyatt, R. Shunmugasundaram, J.R. Dahn, J. Electrochem. Soc., 163 (2016).
    [153] M. Teshager, S.D. Lin, B.J. Hwang, F.M. Wang, S. Hy, A. Haregewoin, ChemElectroChem, 3 (2016) 337-345.
    [154] J. Yang , N. Solomatin, A. Kraytsberg, Y. Ein‐Eli ChemistrySelect, 1 (2016) 572-576.
    [155] J.-T.T. Li, Z.-Y.Y. Zhou, I. Broadwell, S.-G.G. Sun, Acc. Chem. Res., 45 (2012) 485-494.
    [156] K.-i. Morigaki, J. Power Sources, 103 (2002) 253-264.
    [157] M. Nie, J. Demeaux, B.T. Young, D.R. Heskett, Y. Chen, A. Bose, J.C. Woicik, B.L. Lucht, J. Electrochem. Soc., 162 (2015).
    [158] J.Y. Song, H.H. Lee, Y.Y. Wang, C.C. Wan, J.Power Sources, 111 (2002) 255-267.
    [159] S. Solchenbach, D. Pritzl, E.J.Y. Kong, J. Landesfeind, H.A. Gasteiger, J. Electrochem. Soc., 163 (2016) A2265-A2272.
    [160] H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Journal of The Electrochemical Society, 151 (2004).
    [161] K. Leung, S.B. Rempe, M.E. Foster, Y. Ma, M.J.M. del la Hoz, N. Sai, P.B. Balbuena, J. Electrochem. Soc., 161 (2013).
    [162] M.D. Halls, K. Tasaki, J. Power Sources, 195 (2010) 1472-1478.
    [163] F.A. Soto, Y. Ma, J.M. de la Hoz, J.M. Seminario, P.B. Balbuena, Chem. Mater., 27 (2015) 7990-8000.
    [164] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, Electrochim. Acta, 136 (2014) 274-285.
    [165] I.A. Profatilova, C. Stock, A. Schmitz, S. Passerini, M. Winter, J. Power Sources, 222 (2013) 140-149.
    [166] F. Shi, H. Zhao, G. Liu, P.N. Ross, G.A. Somorjai, K. Komvopoulos, J. Phys. Chem. C, 118 (2014) 14732-14738.
    [167] D.-T. Nguyen, J. Kang, K.-M. Nam, Y. Paik, S.-W. Song, J.Power Sources, 303 (2016) 150-158.
    [168] S. Hong, H.M. Choo, Y.H. Kwon, J.Y. Kim, W.S. Song, J. Electrochem. Soc., 161 (2014).
    [169] M. Nie, D.P. Abraham, Y. Chen, A. Bose, B.L. Lucht, The Journal of Physical Chemistry C, 117 (2013) 13403-13412.
    [170] E. Markevich, K. Fridman, R. Sharabi, R. Elazari, G. Salitra, H.E. Gottlieb, G. Gershinsky, A. Garsuch, G. Semrau, M.A. Schmidt, D. Aurbach, J. Electrochem. Soc., 160 (2013).
    [171] Y. Dong, J. Demeaux, B.L. Lucht, J. Electrochem. Soc., 163 (2016).
    [172] A.L. Michan, B.S. Parimalam, M. Leskes, R.N. Kerber, T. Yoon, C.P. Grey, B.L. Lucht, Chem. Mater, 28 (2016) 8149-8159.
    [173] I.A. Shkrob, J.F. Wishart, D.P. Abraham, The Journal of Physical Chemistry C, 119 (2015) 14954-14964.
    [174] G. Moad, D.H. Solomon, 6 - Chain Transfer, in: The Chemistry of Radical Polymerization (Second Edition), Elsevier Science Ltd, Amsterdam, 2005, pp. 279-331.
    [175] E. Radvanyi, W. Porcher, E. Vito, A. Montani, S. Franger, S. Larbi, PCCP, 16 (2014) 17142-17153.
    [176] V.A. Agubra, J.W. Fergus, J.Power Sources, 268 (2014) 153-162.
    [177] M. Richard, J. Dahn, J. Electrochem. Soc., 146 (1999) 2068-2077.
    [178] L. Ma, J. Xia, X. Xia, J.R. Dahn, J. Electrochem. Soc., 161 (2014).
    [179] M. Winter, W.K. Appel, B. Evers, T. Hodal, K.-C. Möller, I. Schneider, M. Wachtler, M.R. Wagner, G.H. Wrodnigg, J.O. Besenhard, Studies on the anode/electrolyte interface in lithium ion batteries, in: Electroactive Materials, Springer, 2001, pp. 53-66.
    [180] S.-K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, Z. Ogumi, Langmuir, 17 (2001) 8281-8286.
    [181] D.Y. Wang, N.N. Sinha, J.C. Burns, C.P. Aiken, R. Petibon, J.R. Dahn, J. Electrochem. Soc., 161 (2014).
    [182] C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T. Gustafsson, Chem. Mater., 27 (2015) 2591-2599.
    [183] Y.B. Yohannes, S.D. Lin, N.-L. Wu, J. Electrochem. Soc., 164 (2017) A3641-A3648.
    [184] A. Haregewoin, E. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, Electrochim. Acta, 136 (2014) 274-285.
    [185] L. Chen, K. Wang, X. Xie, J. Xie, Electrochem. Solid-State Lett., 9 (2006).
    [186] D. Aurbach, B. Markovsky, A. Shechter, Y. Ein‐Eli, H. Cohen, A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures, 143 (1996).
    [187] P. Lanz, P. Novak, J. Electrochem. Soc., 161 (2014).
    [188] D. Aurbach, I. Weissman, A. Zaban, O. Chusid, Electrochim. Acta, 39 (1994) 51-71.
    [189] A.L. Michan, B.S. Parimalam, M. Leskes, R.N. Kerber, T. Yoon, C.P. Grey, B.L. Lucht, Chem. Mater., (2016).
    [190] M. Nie, D.P. Abraham, Y. Chen, A. Bose, B.L. Lucht, J.Phys. Chem. C, 117 (2013) 13403-13412.
    [191] L. Gireaud, S. Grugeon, S. Laruelle, S. Pilard, J.M. Tarascon, J. Electrochem. Soc., 152 (2005).
    [192] J.T. Weil, J. Van der Veen, H. Olcott, Nature, 219 (1968) 168-169.
    [193] M. Taggougui, B. Carré, P. Willmann, D. Lemordant, J. Power Sources, 174 (2007) 643-647.
    [194] C. Buhrmester, L. Moshurchak, R. Wang, J. Dahn, J. Electrochem. Soc., 153 (2006) A1800-A1804.
    [195] L.M. Moshurchak, C. Buhrmester, R.L. Wang, J.R. Dahn, Electrochim. Acta, 52 (2007) 3779-3784.
    [196] C. Buhrmester, L. Moshurchak, R.L. Wang, J. Dahn, J. Electrochem. Soc., 153 (2006) A288-A294.
    [197] T. Dagger, M. Grützke, M. Reichert, J. Haetge, S. Nowak, M. Winter, F.M. Schappacher, J.Power Sources, 372 (2017) 276-285.
    [198] K. Chabita, P. Mandal, Indian J. Chem. A,, 41 (2002) 2231-2237.
    [199] V. Golubev, V. Sen, E. Rozantsev, Izv AN SSSR Ser Khim, 9 (1979) 2091.
    [200] Z.P. Zhang, M.Z. Rong, M.Q. Zhang, C.e. Yuan, Polymer Chemistry, 4 (2013) 4648-4654.
    [201] Y. Shi, Y. Nabae, T. Hayakawa, M.-a. Kakimoto, Rsc Advances, 5 (2015) 1923-1928.
    [202] G. Socrates, J. Am. Chem. Soc., 117 (1995) 1671-1671.
    [203] K.-i. Morigaki, J. Power Sources, 104 (2002) 13-23.

    QR CODE