簡易檢索 / 詳目顯示

研究生: 陳育瑞
Yu-Jui Chen
論文名稱: 大型吊扇安裝配置之數值模擬分析
Numerical Analysis on the Proper Installation Setting of HVLS Fans Operating inside Closed Space
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 向四海
周永泰
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 166
中文關鍵詞: 高風量低速之大吊扇流場可視化計算流體力學熱舒適度無因次化分析
外文關鍵詞: HVLS fan, Numerical flow visualization, Thermal comfort, Air speed range coverage (ASRC), Dimensional analysis
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以直徑7.3公尺之高風量低速大吊扇為分析對象,探討其在高度10公尺之大截面積的封閉環境下,以60rpm運轉之流場與性能特性,並在知名商用CFD模擬軟體Fluent之架構進行相關之數值模擬及流場可視化;首先針對單一吊扇運作的流場進行分析,選定扇葉安裝角、吊扇與天花板距離、及環境尺寸作為變數,並依熱舒適度理論將有效風速定為0.5m/s,觀察其入出口流量以及有效空氣速度範圍覆蓋率(ASRC),藉以判斷吊扇在不同環境中運轉之效能和其適用性。系統化參數分析之模擬結果顯示,扇葉安裝角17度之吊扇能產生最大出口流量,且必需安置於距離天花板至少1.5公尺處,即可確保吊扇入口進風之順暢;同時得知邊長40公尺之正方形環境為此吊扇之最大適用空間,在此環境下能有最佳之出口流量及ASRC表現。接著,以上述單一吊扇之最佳配置方案為依據,進行兩個吊扇相距不同距離之模擬分析,結果顯示在兩吊扇距離為8~10個半徑時,彼此之出風不會干擾且可維持個別出風流量,甚至產生些許強化性能之效果,使吊扇出口流量增加9%;為了檢驗這些結論在更大環境之適用性,本研究將四個吊扇以陣列安置並選定最佳的吊扇距離10個半徑,CFD計算得出吊扇的平均出口流量及ASRC值,成功地驗證所得之結論可用於更大的空間。另外,為擴大研究成果之適用性,在此對吊扇運作相關之參數藉π理論進行無因次分析,以取得重要參數的無因次之函數關係式,並藉模擬結果以求得對應之多項式和係數,獲得包括出口流量及ASRC這兩個吊扇性能重要參數,二者與吊扇天花板距離、環境尺寸、和兩吊扇間距之無因次公式,如此使用者經由上述公式的協助,即可輕易地達成吊扇安裝效能最佳化的規劃。


    Recently, HVLS (high volume low speed) ceiling fan, also called as helicopter fan, has become a popular product to incorporate with the air-conditioning system inside the large-size building. Besides the energy-saving advantage, helicopter fan can offer a spreader velocity distribution with the thermal-comfort air speed. Clearly, the appropriate arrangement on fan installation and its ASRC (air speed range coverage) are important to maximize the thermal-comfort effect, and become the topic of this study. At first, this numerical investigation performs the flow field simulation on the helicopter fan with five 3.65m-in-radius blades operating at 60 rpm in a space with square floor and 10-m height. Also, blade setting angle, installing distance from the ceiling, and space size are covered in the parametric study, which is executed within the framework of CFD tool (Ansys Fluent). The result indicates that the optimum combination consisting of the 17-degree setting angle and installing at 1.5m from the ceiling can provide the best ASRC value based on the 0.5m/s air velocity, which is determined with the aids of weather condition in Taipei, Taiwan and thermal comfort tool developed by center for the built environment of University of California at Berkeley.
    Next, this proper installation setting is utilized to the two-fan operation space, in which floor area varies with the change on distance between two HVLS fans. Thereafter, the best fan distance is identified by the numerical evaluation on the corresponding discharge and ASRC for different fan distances. It is found that fans separated by 8~10 radius not only can avoid the discharge flow interference, but also results in a slight enhancement on the discharge volume (9%) and the ASRC. Furthermore, these optimized parameter settings are checked on the 4-fan installing case by the CFD simulation. Finally, the dimensional analysis is applied to obtain the function forms among several dimensionless groups for the convenient use of the above best settings. It follows that dimensionless flow coefficient and ASRC ratio can be expressed as functions of Reynolds number, nondimensional distances from the ceiling, and distance between fans. Also, these functions are approximately expressed in polynomial form, in which coefficients are decided easily by fitting with previous CFD outcomes. In summary, this numerical work performs parametric study to attain the proper installation setting for several helicopter fans operating within a huge closed space. Also, the dimensionless forms of discharge flowrate and ASRC are expressed in the ready-to-use equations, which offer the proper installation plan for different fan sizes and various spaces.

    目 錄 摘 要 I Abstract III 致 謝 V 目 錄 VI 圖索引 IX 表索引 XII 符號索引 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與方法與流程 6 第二章 吊扇簡介與舒適度概論 11 2-1吊扇結構與種類 11 2-2 熱舒適度概論 13 2.2.1人體之熱平衡方程式 13 2.2.2 PMV 與 PPD 之計算 22 第三章 數值方法 28 3.1 統御方程式 28 3.2紊流模型理論 30 3.2.1 雷諾數平均數值模擬法 31 3.2.2 大尺度渦旋計算法 32 3.3 數值計算方法與理論 36 3.3.1 數值求解流程 36 3.3.2離散化方程式 37 3.3.3上風差分法 41 3.3.4速度與壓力的耦合 42 第四章 吊扇之模型及邊界條件 45 4.1幾何模型介紹 45 4.2網格規畫與邊界條件 50 4.2.1網格規劃 50 4.2.2邊界條件設定 55 第五章 單吊扇之流場分析 59 5.1 扇葉安裝角之模擬分析 60 5.2 吊扇安置高度之模擬分析 68 5.3 吊扇安裝環境尺寸之模擬分析 81 第六章 兩個吊扇之流場分析 94 6.1兩個吊扇運作之流場和性能特性 94 6.2四個吊扇運作之流場和性能特性 107 第七章 無因次分析 114 7.1白金漢π定理與無因次參數 114 7.2模擬結果之無因次分析 116 7.2.1單一吊扇之運作案例 117 7.2.2 兩個吊扇運之作案例 118 7.3無因次關係之決定與驗證案例 119 7.3.1無因次關係之決定 119 7.3.2 無因次關係之驗證 128 第八章 結論與建議 136 8.1結論 136 8.1.1單一吊扇之模擬分析結果 137 8.1.2複數吊扇之模擬分析結果 137 8.1.3 無因次分析 138 8.2建議 141 參考文獻 143

    [1] 行政院環保署,“室內空氣品質的重要性”, http://iaq.epa.gov.tw/indoorair/page/6_1.aspx。
    [2] Yunfei Gao, Hui Zhang, Edward Arens, Elaina Present, Baisong Ning, Yongchao Zhai, Jovan Pantelic, Maohui Luo, Lei Zhao, Paul Raftery, and Shichao Liu, “Ceiling Fan Air Speeds around Desks and Office Partitions,” Building and Environment, Volume 124, pp. 412-440, 2017.
    [3] Shuo Liu, Aleksandra Lipczynska, Stefano Schiavon, and Edward Arens, “Detailed Experimental Investigation of Air Speed Field Induced by Ceiling Fans,” Building and Environment, Volume 142, pp. 342-360, 2018.
    [4] Huan Wang, Hong Zhang, Xiaowei Hu, Maohui Luo, Guijin Wang, Xianting Li, and Yingxin Zhu, “Measurement of Airflow Pattern Induced by Ceiling Fan with Quad-View Colour Sequence Particle Streak Velocimetry,” Building and Environment, Volume 152, pp. 122-134, 2019.
    [5] 周建安,小型冷卻風扇在不同流阻下之性能研究,國立臺灣科技大學機械系博士論文,2004年
    [6] Ramadan Bassiouny and Nader S. Korah, “Studying the Features of Air Flow Induced by a Room Ceiling-Fan,” Building and Environment, Volume 43, pp. 1913-1918, 2011.
    [7] Babich Francesco, Malcolm Cook, Dennis Loveday, Rawal, Rajan, and Yash Shukla, “Transient Three-Dimensional CFD Modelling of Ceiling Fans,” Building and Environment, Volume 123, pp. 37-49, 2017.
    [8] Wenhua Chen, Shichao Liu, Yunfei Gao, Hui Zhang, Edward Arens, Lei Zhao, and Junjie Liu, “Experimental and Numerical Investigations of Indoor Air Movement Distribution with an Office Ceiling Fan,” Building and Environment, Vol. 130, pp. 14-26, 2018.
    [9] P. O. Fanger, “Thermal Comfort,” McGraw-Hill, New York, NY, 1972.
    [10] 來源:中國文化大學食品暨保健營養學系,”一般身體活動的MET值”,http://140.137.70.177/control/control03_02.htm,2001年。
    [11] D. Dubios and E. F. Dubios, “A Formula to Estimate Approximate Surface Area, if Height and Weight are Known,” Archives of Internal Medicine, Volume 17, pp. 863-871, 1916.
    [12] 黃鉦盛,空調新舒適指標 PMV 之應用分析,國立中山大學機械工程研究所碩士論文,1994年。
    [13] B. W. Olesen, “Thermal Comfort,” Bruel and Kjaer Tech. Rev.No.2, 1982.
    [14] L. S. Chan, “Local Thermal Discomfort,” City University of Hong Kong, Available at: http://personal.cityu.edu.hk/~bsapplec/.
    [15] International Organization for Standardization, ISO 7730:2005.
    [16] 交通部中央氣象局Central Weather bureau氣候月平均https://www.cwb.gov.tw/V8/C/C/Statistics/monthlymean.html
    [17] Federico Tartarini, Stefano Schiavon, Toby Cheung, and Tyler Hoyt,” CBE Thermal Comfort Tool: Online Tool for Thermal Comfort Calculations and Visualizations” Software X, Volume 12, 100563.
    [18] R. Smirnov, S. Shi, and I. Celik, “Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling,” Journal of Fluids Engineering, Volume 123, pp. 359-371, 2001.
    [19] A. Uranga, P. Persson, M. Drela, M., and J. Peraire, “Implicit Large Eddy Simulation of Transitional Flows over Airfoils and Wings,” 19th AIAA Computational Fluid Dynamics Conference, San Antonio, Texas, 2009.

    無法下載圖示 全文公開日期 2025/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE