簡易檢索 / 詳目顯示

研究生: 呂則慶
Tse-Ching Lu
論文名稱: 表面疏水化修飾 γ-環糊精金屬有機骨架及其耐濕性研究
Surface hydrophobically modified γ-cyclodextrin based metal organic framework and its moisture-resistance study
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 李振綱
Cheng-Kang Lee
蔡伸隆
Shen-Long Tsai
林昇佃
Shawn D. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 118
中文關鍵詞: γ-環糊精金屬有機骨架表面疏水化修飾
外文關鍵詞: γ-cyclodextrin, metal organic framework, Surface hydrophobically modified
相關次數: 點閱:286下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

γ-環糊精為八個葡萄糖連結之寡糖所形成的環狀結構,可做為有機配體與金屬鉀離子結合形成多孔性的金屬有機骨架(γ-CD-MOF),金屬有機骨架(Metal Organic Frameworks, MOFs)具有高結晶度、高比表面積,且其孔徑、大小及形狀因有機配體與金屬離子之不同而異,有利於氣體之吸附、儲存及分離。而γ-CD-MOF 則可視為綠色可再生的多孔骨架,可封存大量的 CO2 及用以分離苯系混合物(BTEX),但其主要缺點在於耐水性差。因此本論文旨在研究如何可使γ-CD-MOF具有抗濕性。經由甲醇蒸氣擴散法從水溶液中所製備出之 γ-CD-MOF,經 SEM 分析其大小約在 3~10 μm,具有立方體的形狀,由 XRD 分析得知其結晶度為 69.87% ,比表面積為 1171 m2 g-1,在 77 K 下的 N2 吸附量可達到 300 cm3 g-1。為使 γ-CD-MOF 具耐濕性,因此本論文分別探討以 PDMS-AB、ε-PL-AOT、PDA、Span 80和 HDTMS 等幾種方式在 γ-CD-MOF 表面進行疏水化修飾。其中唯有經 1% HDTMS 表面修飾後仍可保有 γ-CD-MOF 之原有特性及大小,經 XRD 分析其結晶度增加為 76.95%,比表面積則降為 632.78 m2 g-1,在 77 K 下的 N2 最高吸附量亦降為 150 cm3 g-1。而分別接觸濕氣 12 和24 小時後其形態維持不變,但結晶度則分別降為 23.51% 和 38.05%,推測可能是因為 HDTMS 無法完全修飾到 γ-CD-MOF 表面。透過甲基紅呈色定性分析可得知 γ-CD-MOF 具有吸附 CO2 的功能,而經修飾後的 γ-CD-MOF 亦能保有吸附 CO2 的功能。在 298 K 下未修飾之γ-CD-MOF 最多可吸附將近 28 cm3 g-1,經 HDTMS 修飾後的 γ-CD-MOF 的吸附量可達到 30 cm3 g-1。最後在經過薑黃素包封定性驗證,經 HDTMS 修飾後的 γ-CD-MOF在水中不會被溶解釋放出薑黃素,反之未修飾的γ-CD-MOF 則立即溶解釋放出薑黃素,證明經 HDTMS 修飾後表面疏水化的 γ-CD-MOF 具有足夠的抗濕能力。


γ-cyclodextrin (γ-CD) is a 8 glucose connected cyclic oligosaccharide. When used as an organic ligand, it can complex with potassium ion to form porous γ-cyclodextrin metal organic framework (γ-CD-MOF). Metal organic frameworks (MOFs) show some outstanding characteristics, including high crystallinity, and surface area, with specific pore size and shape, those are beneficial to gas adsorption, sequestration, and separation. γ-CD-MOF prepared based on oligosaccharide is considered as a green and renewable porous framework. It has been demonstrated that γ-CD-MOF can be used to sequestrate a large mount of CO2 and separating aromatic mixtures (BTEX). However, the main drawback of γ-CD-MOF is its poor moisture-resistance. Therefore, the aim of this thesis is to improve moisture resistant properties of γ-CD-MOF. γ-CD-MOF prepared by methanol vapor diffusion method is cubic crystals with the size is around 3~10 μm. The crystallinity is 69.87% as analyzed by XRD, the surface area is 1171 m2 g-1, the amount of N2 adsorption at 77K reaches 300 cm3 g-1. In order to make γ-CD-MOF resist the moisture, we explored different hydrophobic modifications on the surface of γ-CD-MOF, such as PDMS-AB, ε-PL-AOT, PDA, Span 80 and HDTMS methods, respectively. Among these methods, only HDTMS surface modification made γ-CD-MOF still maintain its characteristics and size, and crystallinity increased to 76.95%, surface area decreased to 632.78 m2 g-1. The amount of N2 adsorption at 77K also decreased to 150 cm3 g-1. After in contact with moisture for 12 and 24 hours, respectively, the cubic crystal shape was maintained, but the crystallinity decreased to 23.51% and 38.05%, respectively. Probably, the reduced crystallinity after moisture treatment is due to the insufficient modification of HDTMS on the surface of γ-CD-MOF. By employing methyl red dye as indicator, γ-CD-MOF demonstrated its CO2 adsorbing capability, and HDTMS modified γ-CD-MOF also retained about the same capability. The unmodified γ-CD-MOF can adsorb around 28 cm3 g-1 of CO2 at 298K, and HDTMS modified one is around 30 cm3 g-1. Finally, after encapsulation of curcumin, HDTMS modified one didn’t release curcumin while suspended in water. On the contrary, pristine γ-CD-MOF released the encapsulated curcumin immediately when in contact with water. This shows that the surface hydrophobically modified by HDTMS can effectively prevent γ-CD-MOF structure from damaging by moisture.

摘要 i Abstract ii 致謝 iv 縮寫表 v 目錄 vi 圖索引 ix 表索引 xiv 第一章 緒論 1 1.1 前言 1 1.2 研究目的及內容 4 第二章 文獻回顧 6 2.1 金屬有機骨架 (MOFs) 6 2.2 以多醣類配體為基礎合成之 MOFs(Polysaccharide based MOFs) …………………………………………………………………………7 2.3 環糊精 (CDs) 11 2.4 以環糊精和鉀離子製備之 MOFs(γ-CD-MOFs) 13 2.5 γ-CD-MOF 於 CO2 之應用 15 2.6 表面疏水化改質 18 2.6.1 疏水化改質 18 2.6.2 MOFs 疏水化改質 23 2.6.3 γ-CD-MOF 疏水化改質 27 2.6.3.1 交聯法 27 2.6.3.2 修飾法 28 第三章 實驗方法,流程與材料 32 3.1 實驗流程 32 3.2 實驗材料與設備 33 3.2.1 實驗藥品 33 3.2.2 實驗儀器與設備 34 3.3 實驗方法 35 3.3.1 γ-CD-MOF 合成 35 3.3.2 γ-CD-MOF 疏水化改質 36 3.3.2.1 PDMS-AB 修飾法 36 3.3.2.2 ε-PL-AOT 修飾法 36 3.3.2.3 PDA 修飾法 37 3.3.2.4 Span 80 修飾法 38 3.3.2.5 HDTMS 修飾法 38 3.3.3 γ-CD-MOF 耐濕性測試 39 3.3.4 以甲基紅測試 γ-CD-MOF 之 CO2 吸附 39 3.3.5 以薑黃素包封探討修飾後 γ-CD-MOF 之疏水性 40 3.4 材料性質測定 41 3.4.1 掃描式電子顯微鏡 (SEM) 41 3.4.2 傅立葉轉換紅外線光譜分析儀 (FTIR) 41 3.4.3 進階式熱重分析儀(TGA) 41 3.4.4 表面積及孔徑分析儀(BET) 41 3.4.5 X 光繞射儀(XRD) 43 第四章 結果與討論 45 4.1 γ-CD-MOF 之製備及性質探討 45 4.2 γ-CD-MOF 之表面疏水化改質 52 4.2.1 ε–PL–AOT 修飾法 52 4.2.2 PDA 修飾法 58 4.2.1 PDMS-AB 修飾法 61 4.2.2 Span 80 修飾法 66 4.2.3 HDTMS 修飾法 71 4.3 γ-CD-MOF 之疏水化改質前後耐濕性探討 79 4.3.1 疏水化改質前 79 4.3.2 HDTMS 修飾法 83 4.4 γ-CD-MOF 之 CO2 吸附探討 90 4.5 以薑黃素包封探討修飾後 γ-CD-MOF 之疏水性 92 第五章 結論 94 第六章 參考資料 96

1. Bose, B., Global Warming: Energy, Environmental Pollution, and the Impact of Power Electronics. IEEE Industrial Electronics Magazine, 2010. 4(1): p. 6-17.
2. Ajoyan, Z., P. Marino, and A.J. Howarth, Green applications of metal–organic frameworks. CrystEngComm, 2018. 20(39): p. 5899-5912.
3. Florides, G.A. and P. Christodoulides, Global warming and carbon dioxide through sciences. Environ Int, 2009. 35(2): p. 390-401.
4. Wu, D., et al., Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. J Am Chem Soc, 2013. 135(18): p. 6790-3.
5. Li, H., et al., Facile stabilization of cyclodextrin metal-organic frameworks under aqueous conditions via the incorporation of C60 in their matrices. Chem Commun (Camb), 2016. 52(35): p. 5973-6.
6. Wang, L., et al., Effective Formaldehyde Capture by Green Cyclodextrin-Based Metal-Organic Framework. ACS Appl Mater Interfaces, 2018. 10(1): p. 42-46.
7. Liu, B., et al., Microwave-Assisted Rapid Synthesis of γ-Cyclodextrin Metal–Organic Frameworks for Size Control and Efficient Drug Loading. Crystal Growth & Design, 2017. 17(4): p. 1654-1660.
8. Furukawa, H., et al., The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013. 341(6149).
9. Nadar, S.S., et al., Polysaccharide based metal organic frameworks (polysaccharide–MOF): A review. Coordination Chemistry Reviews, 2019. 396: p. 1-21.
10. Rajkumar, T., et al., Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications. Journal of Industrial and Engineering Chemistry, 2019. 72: p. 50-66.
11. Forgan, R.S., et al., Nanoporous carbohydrate metal-organic frameworks. J Am Chem Soc, 2012. 134(1): p. 406-17.
12. <Introduction and General Overview of Cyclodextrin Chemistry.pdf>.
13. Smaldone, R.A., et al., Metal-organic frameworks from edible natural products. Angew Chem Int Ed Engl, 2010. 49(46): p. 8630-4.
14. Roy, I. and J.F. Stoddart, Cyclodextrin Metal-Organic Frameworks and Their Applications. Acc Chem Res, 2021. 54(6): p. 1440-1453.
15. Gassensmith, J.J., et al., Strong and reversible binding of carbon dioxide in a green metal-organic framework. J Am Chem Soc, 2011. 133(39): p. 15312-5.
16. Yan, T.K., et al., Crystal Growth of Cyclodextrin-based Metal-organic Framework for Carbon Dioxide Capture and Separation. Procedia Engineering, 2016. 148: p. 30-34.
17. Sun, C., et al., Bioinspired Hydrophobic Cellulose Nanocrystal Composite Films as Organic-Solvent-Responsive Structural-Color Rewritable Papers. ACS Appl Mater Interfaces, 2020. 12(23): p. 26455-26463.
18. Li, Y., et al., One-pot, template-free synthesis of a robust superhydrophobic polymer monolith with an adjustable hierarchical porous structure. Green Chemistry, 2016. 18(19): p. 5266-5272.
19. Kim, S., J.W. Lee, and W. Hwang, One-Step Eco-Friendly Superhydrophobic Coating Method Using Polydimethylsiloxane and Ammonium Bicarbonate. ACS Appl Mater Interfaces, 2020. 12(25): p. 28869-28875.
20. Liu, X., et al., Amine-Triggered Dopamine Polymerization: From Aqueous Solution to Organic Solvents. Macromol Rapid Commun, 2018. 39(12): p. e1800160.
21. You, I., et al., Polydopamine coating in organic solvent for material-independent immobilization of water-insoluble molecules and avoidance of substrate hydrolysis. Journal of Industrial and Engineering Chemistry, 2017. 46: p. 379-385.
22. Ushimaru, K., Y. Hamano, and H. Katano, Antimicrobial Activity of epsilon-Poly-l-lysine after Forming a Water-Insoluble Complex with an Anionic Surfactant. Biomacromolecules, 2017. 18(4): p. 1387-1392.
23. Yu, H., et al., Fabrication of polylysine based antibacterial coating for catheters by facile electrostatic interaction. Chemical Engineering Journal, 2019. 360: p. 1030-1041.
24. Zhang, W., et al., A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity. J Am Chem Soc, 2014. 136(49): p. 16978-81.
25. Ding, M., X. Cai, and H.L. Jiang, Improving MOF stability: approaches and applications. Chem Sci, 2019. 10(44): p. 10209-10230.
26. Singh, V., et al., Template-directed synthesis of a cubic cyclodextrin polymer with aligned channels and enhanced drug payload. RSC Advances, 2017. 7(34): p. 20789-20794.
27. Furukawa, Y., et al., Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks. Angew Chem Int Ed Engl, 2012. 51(42): p. 10566-9.
28. Castells-Gil, J., et al., Surface Functionalization of Metal-Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance. ACS Appl Mater Interfaces, 2017. 9(51): p. 44641-44648.
29. KE Duo., et al., Preparation of moisture resistant γ-CD-MOF stabilized by Span and its application in air pollution control. Chin J Appl Environ Biol, 2020, 26 (1): 190-194
30. Singh, V., et al., Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding. Chem Commun (Camb), 2017. 53(66): p. 9246-9249.
31. Ke, D., et al., Facile stabilization of a cyclodextrin metal–organic framework under humid environment via hydrogen sulfide treatment. RSC Advances, 2019. 9(32): p. 18271-18276.
32. Fernandez, C.A., et al., Hydrophobic and moisture-stable metal-organic frameworks. Dalton Trans, 2015. 44(30): p. 13490-7.
33. Ding, M. and H.-L. Jiang, Improving Water Stability of Metal–Organic Frameworks by a General Surface Hydrophobic Polymerization. CCS Chemistry, 2020: p. 2740-2748.
34. Qian, X., et al., Imparting surface hydrophobicity to metal-organic frameworks using a facile solution-immersion process to enhance water stability for CO2 capture. Nanoscale, 2017. 9(5): p. 2003-2008.
35. STEPHEN BRUNAUE, et al., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 2, 309–319
36. 林律吟,宋育順,製備電聚合聚吡咯碳纖維及金屬有機框架衍生碳材應用於柔性超級電容器.國立臺北科技大學化學工程與生物科技系
37. Boukezzi, L., A. Boubakeur, and M. Lallouani, Effect of artificial thermal aging on the crystallinity of XLPE insulation cables: X-ray study, in 2007 Annual Report - Conference on Electrical Insulation and Dielectric Phenomena. 2007. p. 65-68.
38. Sunkyu ParkCellulose, et al., crystallinity index_measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3, 10 (2010).
39. Li, H., et al., Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale, 2017. 9(22): p. 7454-7463.
40. Hu, Z., et al., Encapsulation of menthol into cyclodextrin metal-organic frameworks: Preparation, structure characterization and evaluation of complexing capacity. Food Chem, 2021. 338: p. 127839.
41. Alothman, Z., A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 2012. 5(12): p. 2874-2902.
42. Moussa, Z., et al., Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin. Food Chem, 2016. 212: p. 485-94.

無法下載圖示 全文公開日期 2024/09/13 (校內網路)
全文公開日期 2026/09/13 (校外網路)
全文公開日期 2026/09/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE