簡易檢索 / 詳目顯示

研究生: 許馨庭
Hsin-Ting - Hsu
論文名稱: 結合無線藍牙感測與視覺化指引之火災動態救援路線最佳化
Real-time Fireman Rescue Route Optimization Integrated with Bluetooth Sensors and Visual System in a University Building
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 鄭明淵
Min-Yuan Cheng
楊亦東
I-Tung Yang
謝佑明
Yo-Ming Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 110
中文關鍵詞: 防火救災建築資訊模型藍牙感測器路徑最佳化智慧行動裝置視覺化效果。
外文關鍵詞: Firefighting, building information modeling, Bluetooth sensor, path optimization, smart mobile device, visualized effect.
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 防火救災是保障民眾與建築物生命財產安全的其中一項重要議題,隨著建築環境不斷改變,高層建築、挑高空間、特殊空間不斷地興建,災害事故也變得愈來愈多元化與難以預測,因此,有效防救災為保護生命財產的關鍵要素。現行消防機關的搶救圖資皆以2D平面為主,其消防背景乃是基於過去的火災多以平房為主要搶救對象,因此消防機關於到達火災現場時,指揮官利用甲、乙種圖資,即可立即決定人車佈署位置與取得佔據水源資訊,顯然現今的火場指揮官已無法憑藉平面圖資的內容,立即採取最合宜之消防戰術、戰略、戰力佈署,且無法得知是否有人員受困火場之問題,且於火災現場使用時,必須於為數眾多的圖資當中,不斷尋找翻閱樓層上下層之圖面,致使降低救災效率。近年來智慧型防救災整合系統興起,結合資通訊科技的自動偵測與訊息傳輸系統,可即時掌握火場現況、警報通報、避難引導或是強化消防救災之科技技術,這些皆是保護生命財產安全需求且符合大眾期待的安全防災方案,建築物防災設備與消防安全系統之整合開發與應用已成為防救災上之迫切需要,亦是未來提升防救災功能之重要趨勢。因此以藍牙探測提供早期偵測且正確警報的能力,並能即時啟動滅火及通報機制;以最佳路徑救災規劃,提供消防人員正確之救災資訊,並輔助做正確且快速之救災路線導引;藉由整合各項防火及救災資訊,解決受災民眾與消防單位間之資訊傳遞問題。本研究希望應用整合消防救災之設備資訊、藍牙感測器之環境與人員定位資訊及救災規劃之路徑最佳化資訊,迅速建立消防機關救災流程架構,以及時準確的接收消防人員及受困民眾的位置,在動態的環境下及時更新最佳搶救路徑規劃,提供消防救災單位即時獲得正確的資訊及掌握先機,有效降低人員傷亡,達到安全防災與救災之目的。


    Firefighting is essential for public safety and building safety, and concerns both human life and property. Alongside changes in the architectural environment, high-rise buildings, high-ceiling interior space, and other special spaces continue to be constructed, resulting in a wide variety of unpredictable disasters and accidents occurring. Therefore, effective disaster prevention and rescue are crucial factors for life and property protection. Currently, rescue maps used in fire departments are two-dimensional (2D) because previous fire accidents mostly occurred in low-rise buildings. Therefore, fire incident commanders only previously had to rely on Class A and B fire rescue maps for firefighter deployment and water source information. Apparently, such 2D-based firefighting strategies, tactics, and deployment are not always applicable to current structures, and do not reveal whether occupants are trapped during a fire. Consequently, fire rescue teams continue to consult maps on different floors when conducting fire rescue tasks, which reduces efficiency. The emergence of an intelligent integrated fire rescue system can provide real-time status updates, alarm reports, evacuation guidance, and improved fire rescue techniques for fire scenes through a combination of contemporary autosensing and communication systems. Therefore, through the combination of existing firefighting equipment, Bluetooth sensors, global positioning system information, and an optimal fire rescue path-planning algorithm, this study constructed a framework for fire rescue procedures for fire departments. By determining the locations of firefighters and trapped occupants, real-time updates for optimal rescue path planning were conducted in a dynamic environment to provide fire departments with accurate information regarding the fire site in real time. The system effectively reduced the number of casualties and achieved the purpose of disaster prevention and rescue.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究流程與論文架構 2 第二章 文獻回顧 4 2.1 火災救援 4 2.1.1 立體火災搶救戰略 4 2.1.2 消防搶救圖資 9 2.2 最佳路徑規劃演算法 11 2.2.1 遺傳基因演算法在路徑最佳化的應用 11 2.2.2 粒子群優化在路徑規劃的發展 13 2.2.3 貝爾曼-福特(Bellman–Ford)演算法在最短路徑規劃應用 14 2.2.4 A*(A-Star)搜尋演算法在路徑搜尋應用現況 15 2.2.5 戴克斯特拉(Dijkstra)演算法在指引系統中的應用 16 2.2.6 比較各方法的優缺點 17 第三章 研究方法 18 3.1 問卷訪談及整合搶救標準作業流程 18 3.2 最佳救災路徑規劃方法 21 3.2.1 最短救災路徑規劃 21 3.2.2 路徑規劃有向圖(Directed Graph)建置 24 3.3 最佳救災路徑規劃程式開發環境 24 3.3.1 程式語言 24 3.3.2 資料庫管理工具 25 3.3.3 最佳救災路徑規劃虛擬碼(Pseudo Code) 25 3.4 視覺化指引資訊系統架構 27 第四章 模擬測試成果評估 29 4.1 火災救難路徑規劃測試場域 29 4.2 測試場域資料設定 31 4.3 模擬測試評估 37 4.3.1. 模擬情境I:消防人員尚未進入火場 37 4.3.2. 模擬情境II:進入火場後,消防人員與受困人員數量不等 38 4.3.3. 模擬情境III:火場內,建築物內多處起火時 40 4.3.4. 模擬情境IV:滅火路徑規劃 42 4.4 模擬結果討論 45 4.5 模擬條件設定與限制 45 第五章 結論與建議 46 5.1 結論 46 5.2 未來研究方向 47 參考文獻 49 附錄一 消防局訪談問卷 56 I. 淡水消防隊 57 II. 竹圍消防隊 59 III. 新北市消防局搶救科 61 附錄二 救災路徑最佳化程式碼C# 64 附錄三 與MYSQL溝通的PHP程式碼 88 附錄四 路徑規劃程式操作畫面 92

    [1] H. Akcan, C. Evrendilek, GPS-free directional localization via dual wireless radios, Computer Communications 35 (9) (2012) 1151-1163.
    [2] S. Bandyopadhyay, A. Mukherjee, Tracking User-movement in Opportunistic Networks to Support Distributed Query-response During Disaster Management, Procedia Engineering 159 (2016) 82-88.
    [3] R. Bellman, On a Routing Problem, Quarterly of Applied Mathematics 16 (1) (1958) 87-90.
    [4] P. Chakroborty, T. Dwivedi, Optimal route network design for transit systems using genetic algorithms, Engineering Optimization 34 (1) (2002) 83-100.
    [5] A.Y. Chen, J.C. Chu, TDVRP and BIM Integrated Approach for In- Building Emergency Rescue Routing, Journal of Computing in Civil Engineering 30 (5) (2016) 11.
    [6] A.Y. Chen, T. Huang, Toward BIM-Enabled Decision Making for In-Building Response Missions, Ieee Transactions on Intelligent Transportation Systems 16 (5) (2015) 2765-2773.
    [7] Y.Z. Chen, S.F. Shen, T. Chen, R. Yang, Path Optimization Study for Vehicles Evacuation Based on Dijkstra algorithm, in: H. Yao (Ed.), 2013 International Conference on Performance-Based Fire and Fire Protection Engineering, Vol. 71, Elsevier Science Bv, Amsterdam, 2014, pp. 159-165.
    [8] C.-Y. Cheng, Y.-Y. Chen, T.-L. Chen, J. Jung-Woon Yoo, Using a hybrid approach based on the particle swarm optimization and ant colony optimization to solve a joint order batching and picker routing problem, International Journal of Production Economics 170, Part C (2015) 805-814.
    [9] L. Cheng, C. Liu, B. Yan, Improved hierarchical A-star algorithm for optimal parking path planning of the large parking lot, 2014 IEEE International Conference on Information and Automation, ICIA 2014, Institute of Electrical and Electronics Engineers Inc., Hailar, Hulunbuir, China, 2014, pp. 695-698.
    [10] T.H. Cormen, C.E. Leiserson, Introduction To Algorithms, 2nd Edition, 2 ed., The MIT Press, Cambridge , Massachusetts London, England, 2001.
    [11] R. Dai, Path planning of solar-powered unmanned aerial vehicles at low altitude, 2013 IEEE 56th International Midwest Symposium on Circuits and Systems, MWSCAS 2013, August 4, 2013 - August 7, 2013, Institute of Electrical and Electronics Engineers Inc., Columbus, OH, United states, 2013, pp. 693-696.
    [12] D. Dawson, K. Mayger, M.J.W. Thomas, K. Thompson, Fatigue risk management by volunteer fire-fighters: Use of informal strategies to augment formal policy, Accident Analysis & Prevention 84 (2015) 92-98.
    [13] E.W. Dijkstra, A Note on Two Problems in Connexion with Graphs, Numerische Mathematlk. 1, S. 269-271 (1959).
    [14] F. Duchon, A. Babinec, M. Kajan, P. Beno, M. Florek, T. Fico, L. Juriica, Path planning with modified A star algorithm for a mobile robot, Modelling of Mechanical and Mechatronic Systems, MMaMS 2014, Vol. 96, Elsevier Ltd, 2014, pp. 59-69.
    [15] S.A. Fadzli, S.I. Abdulkadir, M. Makhtar, A.A. Jamal, Robotic indoor path planning using dijkstra's algorithm with multi-layer dictionaries, 2nd IEEE International Conference on Information Science and Security, ICISS 2015, December 14, 2015 - December 16, 2015, Institute of Electrical and Electronics Engineers Inc., Seoul, Korea, Republic of, 2015.
    [16] J. Guivant, B. Seton, M. Whitty, 2D path planning based on Dijkstra's algorithm and pseudo priority queues, 5th International Symposium on Combinatorial Search, SoCS 2012, July 19, 2012 - July 21, 2012, AAAI Press, Niagara Falls, ON, Canada, 2012, p. 206.
    [17] G. Habibi, W. Xie, M. Jellins, J. McLurkin, Distributed path planning for collective transport using homogeneous multi-robot systems, 12th International Symposium on Distributed Autonomous Robotic Systems, DARS 2014, Vol. 112, Springer Verlag, Daejeon, Korea, Republic of, 2016, pp. 151-164.
    [18] S. Hahm, D. Knuth, D. Kehl, S. Schmidt, The impact of different natures of experience on risk perception regarding fire-related incidents: A comparison of firefighters and emergency survivors using cross-national data, Safety Science 82 (2016) 274-282.
    [19] M.A. Hassanain, M.A. Hafeez, M.O. Sanni-Anibire, A ranking system for fire safety performance of student housing facilities, Safety Science 92 (2017) 116-127.
    [20] G.L.-K. Hsiao, C.-H. Tang, T.-C. Huang, C.-Y. Lin, Firefighter Wayfinding in Dark Environments Monitored by RFID, Fire Technology 52 (1) (2015) 273-279.
    [21] M.A.F. Jensen, D. Bochtis, C.G. Sorensen, M.R. Blas, K.L. Lykkegaard, In-field and inter-field path planning for agricultural transport units, Computers and Industrial Engineering 63 (4) (2012) 1054-1061.
    [22] B.M. Keller, T.R. Cunningham, Firefighters as distributors of workplace safety and health information to small businesses, Safety Science 87 (2016) 87-91.
    [23] J. Kennedy, The particle swarm: social adaptation of knowledge, IEEE International Conference on Evolutionary Computation, 1997, pp. 303-308.
    [24] J. Kennedy, R. Eberhart, Particle swarm optimization, IEEE International Conference on Neural Networks, Vol. 4, 1995, pp. 1942-1948.
    [25] A. Kirsanov, S.G. Anavatti, T. Ray, Path planning for the autonomous underwater vehicle, 4th International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2013, December 19, 2013 - December 21, 2013, Vol. 8298 LNCS, Springer Verlag, Chennai, India, 2013, pp. 476-486.
    [26] J. L. R. Ford, D.R. Fulkerson, Flows in Networks, Princeton University Press, 1962.
    [27] N. Li, B. Becerik-Gerber, B. Krishnamachari, L. Soibelman, A BIM centered indoor localization algorithm to support building fire emergency response operations, Automation in Construction 42 (2014) 78-89.
    [28] N. Li, B. Becerik-Gerber, L. Soibelman, B. Krishnamachari, Comparative assessment of an indoor localization framework for building emergency response, Automation in Construction 57 (2015) 42-54.
    [29] N. Li, Z. Yang, A. Ghahramani, B. Becerik-Gerber, L. Soibelman, Situational awareness for supporting building fire emergency response: Information needs, information sources, and implementation requirements, Fire Safety Journal 63 (2014) 17-28.
    [30] R. Lovreglio, E. Ronchi, D. Nilsson, A model of the decision-making process during pre-evacuation, Fire Safety Journal 78 (2015) 168-179.
    [31] Neha, A. Kaushik, Extended bellman ford algorithm with optimized time of computation, International Conference on Information and Communication Technology for Sustainable Development, ICT4SD 2015, Vol. 409, Springer Verlag, Ahmedabad, India, 2016, pp. 241-247.
    [32] L. Niu, Iop, A Survey of Wireless Indoor Positioning Technology for Fire Emergency Routing, 8th International Symposium of the Digital Earth, Vol. 18, Iop Publishing Ltd, Bristol, 2014.
    [33] N. Norouzi, M. Sadegh-Amalnick, M. Alinaghiyan, Evaluating of the particle swarm optimization in a periodic vehicle routing problem, Measurement 62 (2015) 162-169.
    [34] M.B. Pellazar, Vehicle route planning with constraints using genetic algorithms, Proceedings of the IEEE 1994 National Aerospace and Electronics Conference (NAECON 1994). Part 1 (of 2), May 23, 1994 - May 27, 1994, Vol. 1, IEEE, Dayton, OH, USA, 1994, pp. 111-118.
    [35] B. Pierce, How rare are large, multiple-fatality work-related incidents?, Accident Analysis & Prevention 96 (2016) 88-100.
    [36] T. Praczyk, P. Szymak, Using genetic algorithms to fix a route for an Unmanned Surface Vehicle, 2012 17th International Conference on Methods and Models in Automation and Robotics, MMAR 2012, August 27, 2012 - August 30, 2012, IEEE Computer Society, Miedzyzdroje, Poland, 2012, pp. 487-492.
    [37] Y.-H. Qu, Q. Pan, J.-G. Yan, Flight path planning of UAV based on heuristically search and genetic algorithms, IECON 2005: 31st Annual Conference of IEEE Industrial Electronics Society, Vol. 2005, IEEE Computer Society, Raleigh, NC, United states, 2005, pp. 45-49.
    [38] H. Ran, L. Sun, X. Gao, Influences of intelligent evacuation guidance system on crowd evacuation in building fire, Automation in Construction 41 (2014) 78-82.
    [39] T.M. Rao, S. Mitra, J. Zollweg, F. Sahin, Computing optimal snowplow route plans using genetic algorithms, 2011 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2011, October 9, 2011 - October 12, 2011, Institute of Electrical and Electronics Engineers Inc., Anchorage, AK, United states, 2011, pp. 2785-2790.
    [40] L. Roditty, U. Zwick, On dynamic shortest paths problems, (2011).
    [41] R. Samar, W.A. Kamal, Optimal Path Computation for Autonomous Aerial Vehicles, Cognitive Computation 4 (4) (2012) 515-525.
    [42] K. Sethanan, W. Neungmatcha, Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations, European Journal of Operational Research 252 (3) (2016) 969-984.
    [43] A. Shimbel, Structural parameters of communication networks, The bulletin of mathematical biophysics 15 (4) (1953) 501-507.
    [44] T.D. Smith, F. Eldridge, D.M. DeJoy, Safety-specific transformational and passive leadership influences on firefighter safety climate perceptions and safety behavior outcomes, Safety Science 86 (2016) 92-97.
    [45] J. Smoczek, J. Szpytko, P. Hyla, Non-collision path planning of a payload in crane operating space, Mechatronic Systems and Materials IV, Vol. 198, Trans Tech Publications Ltd, 2013, pp. 559-564.
    [46] J.A. Taylor, A.V. Lacovara, G.S. Smith, R. Pandian, M. Lehto, Near-miss narratives from the fire service: A Bayesian analysis, Accident Analysis & Prevention 62 (2014) 119-129.
    [47] M.A. Uddin, A.H. Suny, Ieee, Shortest Path Finding and Obstacle Detection for Visually Impaired People Using Smart Phone, 2nd International Conference on Electrical Engineering and Information Communication Technology (Iceeict 2015) (2015) 4.
    [48] J. Wang, H. Zhao, S. Winter, Integrating sensing, routing and timing for indoor evacuation, Fire Safety Journal 78 (2015) 111-121.
    [49] L. Wang, B. Yang, J. Orchard, Particle swarm optimization using dynamic tournament topology, Applied Soft Computing 48 (2016) 584-596.
    [50] S.-H. Wang, W.-C. Wang, K.-C. Wang, S.-Y. Shih, Applying building information modeling to support fire safety management, Automation in Construction 59 (2015) 158-167.
    [51] G. Xiao, Z. Juan, C. Zhang, Detecting trip purposes from smartphone-based travel surveys with artificial neural networks and particle swarm optimization, Transportation Research Part C: Emerging Technologies 71 (2016) 447-463.
    [52] Y. Zheng, B. Jia, X.-G. Li, R. Jiang, Evacuation dynamics considering pedestrians’ movement behavior change with fire and smoke spreading, Safety Science 92 (2017) 180-189.
    [53] 內政部消防署, 消防人員救災安全手冊, 內政部消防署, 2005.
    [54] 王春和, 盧久章, 建構改良式基因演算法求解含容量限制之車輛路徑最佳化問題, 中正嶺學報 37 (1) (2008).
    [55] 付印, 李杰, 邓志红, 限制搜索区域的距离最短路径规划算法, 北京理工大學學報 24 (10) (2004) 881-884.
    [56] 吳亞柏, 應用基因演算法於機器人最佳路徑規劃, 自動化及控制研究所, 國立臺灣科技大學, 2013.
    [57] 李維平, 吳昌志, 賀嘉生, 江正文, 改良粒子群演算法求解旅行家問題, 資訊科學應用期刊 4 (2) (2008) 33-40.
    [58] 林啟榮, 主幹導引式最短路徑搜尋演算法, 資訊科學系, 國立政治大學, 2009.
    [59] 邱進東, 改良式粒子群演算法最佳化設計, 德霖學報 (27) (2014).
    [60] 姜彬, 基于改進遺傳算法的最短路徑路由優化算法的設計與實現, 計算機技術, 揚州大學, 2009.
    [61] 張家豪, 藍國桐, 藍俊雄, 粒子群演算法區域搜尋能力之探討問題, Enterprise Architecture and Information Technology, 2012, p. 46.
    [62] 張益三, 陳漢新, 事故現場指揮官指揮決策最佳化之研究-以特殊重大火災為例, 工學院工程管理研究所, 國立成功大學, 2008.
    [63] 莊凱智, 黃士滔, 應用改良式粒子群演算法於旅行銷售員問題, 工程科技與教育學刊 8 (3) (2011).
    [64] 陳弘升, 劉傳銘, 廖明傑, 一個在動態環境下的最短路徑搜尋演算法, 資訊工程系, 國立臺北科技大學, 2008.
    [65] 陳弘毅, 吳喨生, 火災學, 七版 ed., 鼎茂圖書出版有限公司, 2006.
    [66] 陳良健, 吳家豪, 三維空間資訊於建築物火災搶救模擬之應用, 土木工程學系, 國立中央大學, 2014.
    [67] 陳俊勳, 鄭志強, 地下場站空間火災災害緊急應變運作之研究-以臺北車站為例, 工學院產業安全與防災學程, 國立交通大學, 2009.
    [68] 傅維廷, 警報與避難系統消防安全設備概要, 千華數位文化股份有限公司, 2012.
    [69] 黃德清, 陳崇岳, 蕭力愷, 李勝傑, 新北市政府消防局火警救災派遣模式之研究, (2011).
    [70] 黃德清, 蕭力愷, 李宇松, 李勝傑, 翁羚展, 新北市政府消防局災害搶救過程之通訊設備運用, 2011台灣地理資訊學會年會暨學術研討會, 臺北, 臺灣, 2011.
    [71] 劉昱德, 比較三種萬用啟發式演算法於TSP問題之探討, 工程科技與教育學刊 8 (3) (2011) 443-452.
    [72] 蔡樸生, 林盈灝, 周利蔚, 結合轉折點偵測與 Dijkstra 演算法在最短路徑搜尋與應用, China Institute of Technology 38 (2008) 65-83.
    [73] 鄧子正, 火災科學的基本概念, 千華數位文化股份有限公司, 1999.
    [74] 鄧子正, 消防戰術-理論與實務, 中央警察大學出版社, 1998.
    [75] 鄭紹材, 田慶誠, 余文德, 吳誌銘, 吳炳勳, 智慧型技術應用於建築防火之可行性研究, 內政部建築研究所, 2010.
    [76] 鄭凱明, 應用基因演算法規劃旅行推銷員之最佳化路徑, 電機工程系, 國立高雄應用科技大學, 2013.
    [77] 謝昆霖, 沈進成, 周君妍, 鄭丞君, 基因演算法應用於顧客旅遊行程路徑最適化模式之研究, 旅遊管理研究 4 (1) (2005) 53-66.
    [78] 謝凱明, 結合FCM 及PSO 處理動態模糊分群問題, 資訊經營研究所, 大同大學, 2009.

    無法下載圖示 全文公開日期 2022/02/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE