簡易檢索 / 詳目顯示

研究生: 劉立丞
Li-Cheng Liu
論文名稱: 方形基礎與層狀土壤互制系統承受水平與旋轉外力之動態分析簡化模型
Simplified Model for Dynamic Analysis of Horizontal and Rocking Vibrations for Square Foundation and Layered Soil System
指導教授: 陳希舜
Shi-Shuenn Chen
口試委員: 陳堯中
Yao-Chung Chen
盧之偉
Chih-Wei Lu
施俊揚
Jun-Yang Shi
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 266
中文關鍵詞: 土壤結構互制簡化模型水平與旋轉外力
外文關鍵詞: Soil Structure Interaction, Simplified model, Horizontal and rocking vibration
相關次數: 點閱:253下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以簡化模型模擬方形基礎與層狀土壤互制系統,探討其在水平與旋轉外力作用下之動態行為,並經最佳化分析建立最佳簡化模型,復由各土壤基礎互制系統之最佳簡化模型,歸納出通用簡化模型,以適用於其他層狀土壤,達到降低分析時間之目的。
    本研究針對表面基礎及埋置基礎土壤互制系統,分別進行頻率域與時間域分析,探討通用簡化模型之準確性與適用性:(1)頻率域分析結果,以動態反應放大係數,與理論解、國際學者之簡化分析與SASSI程式分析結果相互驗證。研究結果顯示,僅需以2種水平單元與4種旋轉單元組合,建立6組通用簡化模型,即可進行最佳化分析;抑或直接針對土壤基礎互制系統適用之一組通用簡化模型進行分析,無須對6組通用簡化模型進行最佳化分析。(2)時間域分析結果,以通用簡化模型模擬實際土壤-基礎系統,分別以簡諧載重、強制載重與隨機載重,三種外力形式探討基礎的位移與旋轉角,並與SASSI相互驗證。研究結果顯示本文建立之通用簡化模型不論於頻率域或時間域中,皆能有效模擬方形基礎與層狀土壤系統承受水平與旋轉外力作用下的互制行為。


    This thesis proposes a simplified model to simulate an interaction system including a square foundation and layered soils. Dynamic behavior of the square foundation subjected to horizontal forces and rocking moments is also investigated herein. An optimal simplified model is established to simulate the layered soils through an optimization process in this study. According to the optimization results, the generic simplified model is identified so that it can be applied to various types of layered soils for saving computational time.
    In this study, the frequency-domain and time-domain analyses were carried out for the surface and the embedded foundations mounted on soil media. The accuracy and applicability of the generic simplified model were discussed in two aspects: (1)Frequency-domain analysis results: The dynamic magnification factors at discrete frequency ratio are verified with the theoretical solutions obtained by international scholars and the SASSI program. The research results show that the optimization analysis can be carried out considering only two types of horizontal units and four types of rotational units to establish 6 groups of generic simplified models. On the other hand, a group of generic simplified models can be directly established for the soil-foundation interaction system without analyzing the six groups of generic simplified models. (2)Time-domain analysis results: The generic simplified models are used to simulate the actual soil-foundation system in this thesis. The time-history responses of displacements and rotation angles at the foundation top are investigated considering three types of external forces: a simple harmonic loading, a tri-harmonic loading, and a random loading. The time-history responses are verified with the numerical results from SASSI program. The analyzed results indicate that the generic simplified models established in this study can effectively simulate the interaction behavior of the square foundation and the layered soil subjected to horizontal and rotational forces in both of the frequency and the time-domains.

    論文摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 2 第二章 文獻回顧 3 2.1 土壤與基礎阻抗函數 3 2.2 簡化模型之發展 6 2.3 小結 8 第三章 研究方法 9 3.1 基礎之阻抗函數 9 3.2 簡化模型之阻抗函數的建立 11 3.3 簡化模型單元之阻抗函數的建立 14 3.4 簡化模型參數之求解 15 3.5 簡化模型的最佳化分析 17 3.6 小結 20 第四章 表面基礎土壤互制系統於水平與旋轉外力作用下之模型分析 22 4.1 最佳模型分析 22 4.2 通用簡化模型的選擇 23 4.3 通用簡化模型之驗證與誤差計算 26 4.4 通用簡化模型與Wolf & Somaini Model比較 30 4.5 小結 31 第五章 埋置基礎土壤互制系統於水平與旋轉外力作用下之模型分析 33 5.1 最佳模型分析 33 5.2 通用簡化模型的選擇 36 5.3 通用簡化模型之驗證與誤差計算 43 5.4 小結 49 第六章 通用簡化模型之時間域動態反應分析 52 6.1 通用簡化模型與土壤參數說明 52 6.2 動態外力的加載 55 6.3 基礎受外力作用下之動態反應 56 6.4 小結 62 第七章 結論與建議 63 7.1 結論 64 7.2 建議 68 參考文獻 69

    [1] Lysmer, J. (1978), “Analytical procedures in soil dynamics,” Report No. EERC 78-29, Earthquake Engineering Research Center, University of California, Berkeley, December.

    [2] Gazetas, G. (1983), “Analysis of machine foundation vibrations: state of the art”, Soil Dynamic sand Earthquake Engineering, Vol. 2, No. 1, 1-11

    [3] Roesset, J. M. (1980) “Stiffness and damping coefficients of foundations, Dyn. Resp. Pile Fdns.”, O'Neil and Dobry, eds. ASCE, 1-30

    [4] Lysmer, J. and Richart, F. E. (1966), “Dynamic response of footings to vertical loading”, J. soil mech. Found. Div. ASCE, 92, SM1, 65-91.

    [5] Meek, J. W. and Veletsos, A. S. (1974), “Simple models for foundations in lateral and rocking motion”, Proc. 5th World Conference on Earthquake Engineering, Rome, Italy, Vol. 2.

    [6] Wolf, J. P. and Somaini, D. R. (1986), “Approximate dynamic model of embedded foundation in time domain”, Earthquake Engineering & Structural Dynamics, 14, 683-703.

    [7] Jean, W. Y., Lin, T. W., and Penzien, J. (1990), “System parameters of soil foundation for time domain dynamic analysis”, Earthquake Engineering & Structural Dynamics, 19, 541-553.

    [8] Wolf, J. P. and Paronesso A. (1991), “Lumped-parameter model for foundation on layer”, Proc. 10th European Conference on Soil Mechanics Engineering., Vol. 1, 287-290.

    [9] Wu, W. H. and Chen, C. Y. (2001), “Simple lumped-parameter models of foundation using mass-spring-dashpot oscillators”, Journal of the Chinese Institute of Engineers, 24(6), 681-697.

    [10] Wu, W. H. and Lee, W. H. (2004), “Nested lumped-parameter models for foundation vibrations”, Earthquake Engineering & Structural Dynamics, 33, 1051-1058.

    [11] Saito, M. (2007), “Simple model of frequency-dependent impedance functions in soil-structure interaction using frequency-independent elements,” Journal of Engineering Mechanics, 133(10), 1101-1114.

    [12] Chen, S. S. and Shi, J. Y. (2006), “A Simplified model for vertical vibrations of surface foundations,” ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 5, 651–655.

    [13] Chen, S. S. and Shi, J. Y. (2007), “Simplified model for torsional foundation vibrations”, Soil Dynamics and Earthquake Engineering, 27(3), 250-258.

    [14] Chen, S. S. and Shi, J. Y. (2011), “A response-based simplified model for vertical vibrations of embedded foundations”, Soil Dynamics and Earthquake Engineering, 31(5-6), 773-784.

    [15] Chen, S. S. and Shi, J. Y. (2013), “A simplified model for coupled horizontal and rocking vibrations of embedded foundations”, Soil Dynamics and Earthquake Engineering, 48(5), 209-219.

    [16] Shi, J. Y. (2020), “A systematic modeling approach for layered soil considering horizontal and rotational foundation vibrations”, Computers & Structures, 239, 106336.

    [17] Wong, H. L. and Luco, J. E. (1985), Tables of impedance functions for square foundations on layered media. Soil Dyn Earthq Eng 4, 64–81.

    [18] Chen, P. C. (2020), Stability Analysis and Verification of Real-Time Hybrid Simulation Using a Shake Table for Building Mass Damper Systems. August 2020Frontiers in Built Environment 6, 9.

    [19] Computer program SASSI (1988), Theoretical Manual, prepared for PG&E, Diablo Canyon Long Term Seismic Program, Bechtel Power Corpor ation, San Francisco, CA.

    [20] SASSI User's Manual (1988), Soil Structure Interaction, Inc.

    [21] Lysmer, J. , Tabatabaie-Raissi, M. , Tajirian, F. , Vahdani, S. and Ostadan, F. SASSI (1981): A system for analysis of soil–structure interaction problems. Berkeley: University of California.

    [22] Wilosn, E. L. and Habibullah, A. (2008) SAP2000 Nonlinear – Integrated software for structural analysis and design, Computer and Structures, Inc., Berkeley, USA.

    QR CODE