簡易檢索 / 詳目顯示

研究生: 陳義凱
Yi-Kai Chen
論文名稱: 方形基礎與層狀土壤互制系統承受扭轉外力之動態簡化分析
Dynamic simplified analysis for a square foundation in layer media subjected to torques
指導教授: 陳希舜
Shi-Shuenn Chen
口試委員: 林宏達
Horn-Da Lin
許丁友
Ting-Yu Hsu
施俊揚
Jun-Yang Shi
陳希舜
Shi-Shuenn Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 162
中文關鍵詞: 層狀土壤基礎振動土壤結構互制動態分析
外文關鍵詞: Layered soil, foundation vibration, soil-structure interaction, dynamic analysis
相關次數: 點閱:299下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究模擬土壤之簡化模式探討方形基礎與層狀土壤承受扭轉外力作用下之動態互制行為。土壤簡化分析模式係採用線性彈簧、黏滯阻尼盤及集中轉動慣量等三個離散元素組合成15類基本單元,再依特定之組合規則,遵循三個等值參數以及最多兩個自由度之原則組成33種簡化模型,並經由最佳化分析求得最佳簡化模型與實際基礎土壤互制系統之動態反應放大因數相互比較。研究結果顯示,簡化分析模式可有效模擬方形基礎與層狀土壤在扭轉外力作用下之動態互制行為,利用簡化模式計算基礎動態反應放大因數之誤差皆低於10%。
    本研究亦針對基礎土壤互制系統之動態反應放大因數進行參數分析。研究結果顯示,埋置基礎具有抑制互制系統動態反應之作用,當基礎埋置深度比T=0.5-2.0時,埋置基礎與表面基礎系統尖峰反應之比例介於0.64-0.73;隨著基礎質量比由1增加至10,基礎尖峰反應將放大1.3-1.8倍,基礎與層狀均勻土壤互制系統之無因次共振頻率為2.9-3.7,土壤剪力波速呈線性變化之互制系統無因次共振頻率則為2.2-2.6;當土壤剪力波速比愈小時,基礎尖峰反應愈大,但隨著土層厚度比增加則該效應愈不顯著。


    This study simulates soil layers using a simplified model to investigate the dynamic interaction between square foundations and layered media by a torque applied on the top of the foundation. Fifteen basic units are established by using linear springs, viscous dashpots, and lumped masses moment of inertia. Specific rules including three equivalent parameters and no more than two degrees-of-freedom are then applied to create thirty-three models. The best simplified model is then determined through an optimization process. This study compares the dynamic magnification factor of the simplified soil-foundation model and that of a real soil-foundation interaction system. The results showed that the simplified model may effectively simulate the dynamic interactions between square foundations and layered media subjected to torques. The dynamic magnification factor using the optimal simplified model results in a relative error lower than 10%.
    This study also conducts a parametric analysis to investigate the dynamic magnification factor of soil-foundation interaction systems. The results showed that the foundation embedment reduces the dynamic system response. When the embedment ratio T is ranging from 0.5 to 2, the ratio of the peak response of the embedded foundation to that of the surface foundation would be reduced to a range of 0.64-0.73. When the foundation mass ratio increases from 1 to 10, the peak foundation response would be magnified by 1.3-1.8 times and the dimensionless resonant frequency for uniform soil is 2.9-3.7 and for nonuniform soil is 2.2-2.6. When the shear-wave velocity ratio of soil media decreases from 0.6 to 0.3, the peak foundation response becomes larger and this characteristic may be less significant as the soil depth ratio increases.

    論文摘要 I ABSTRACT III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 1 第二章 文獻回顧 3 2.1 土壤與結構互制之分析方法 3 2.2 動態簡化分析模式之發展 4 2.3 小結 6 第三章 基礎土壤互制系統於扭轉外力作用下之簡化分析模式 7 3.1 簡化分析模式之理論 7 3.1.1 實際基礎土壤互制系統之動態反應 7 3.1.2 簡化分析模式之動態反應 9 3.1.3 等值參數 11 3.1.4 最佳等值模式 13 3.2 簡化模式之驗證 14 3.2.1 表面方形基礎層狀土壤互制系統 15 3.2.2 埋置方形基礎層狀土壤互制系統 17 第四章 基礎土壤互制系統於扭轉外力作用下之參數分析 22 4.1 基礎埋置深度比之影響 22 4.2 基礎質量比之影響 25 4.3 土層厚度比及剪力波速比之影響 27 第五章 結論與建議 32 5.1 結論 33 5.2 建議 35 參考文獻 37

    [1] Hadjian, A. H., Anderson, D., Tseng, W. S., Tsai, N. L., Chang, C. Y., Tang, Y. K., Tang, H. Y., Stepp, J. C., “The learning from the larger scale Lotung soil-structure interaction experiment,” In: Proc 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri (1991).

    [2] Reissner, E., “Stationare, axialsymmetrische durch eine Schuttelnde Masseerrigte Schwingungen eines homogenen elastischen Halbraumes,” Ingenieur-Archiv, Vol. 7, Part6, pp.381-396 (1936).

    [3] Hsieh, T. K., “Foundation Vibrations,” Proceedings of the Institution of Civil Engineers, Vol. 22, No. 2, pp. 211–226 (1962).

    [4] Lysmer, J., “Vertical Motion of Rigid Footing,” Dept. of Civil Eng., University of Michigan, Ph.D. Dissertation (1965).

    [5] Wolf, J. P. and Somaini, D. R., “Approximate dynamic model of embedded foundation in time domain,” Earthquake Engineering and Structural Dynamics, Vol. 14, No. 5, pp. 683–703 (1986).

    [6] Wolf, J. P., “Consistent lumped-parameter models for unbounded soil: physical representation,” Earthquake Engineering & Structural Dynamics, Vol. 20, No. 1, pp. 11–32 (1991).

    [7] Wolf, J. P. and Paronesso, A., “Lumped‐parameter model for a rigid cylindrical foundation embedded in a soil layer on rigid rock,” Earthquake Engineering and Structural Dynamics, Vol. 21, No. 12, pp. 1021–1038 (1992).

    [8] Wu, W. H. and Chen, C. Y., “Simple lumped-parameter models of foundation using mass-spring-dashpot oscillators,” Journal of the Chinese Institute of Engineers, Vol. 24, No. 6, pp. 681–697 (2001).

    [9] Wu, W. H. and Lee, W. H., “Nested lumped-parameter models for foundation vibrations,” Earthquake Engineering & Structural Dynamics, Vol. 33, pp. 1051–1058 (2004).

    [10] Chen, S. S. and Shi, J. Y., “A Simplified model for vertical vibrations of surface foundations,” ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 5, pp. 651–655 (2006).

    [11] 施俊揚,「動態土壤結構互制系統簡化分析模式」,博士論文,國立臺灣科技大學,臺北 (2006)。

    [12] Chen, S. S. and Shi, J. Y., “Simplified model for torsional foundation vibrations,” Soil Dynamics and Earthquake Engineering, Vol. 27, No. 3, pp. 250–258 (2007).

    [13] Chen, S. S. and Shi, J. Y., “A response-based simplified model for vertical vibrations of embedded foundations,” Soil Dynamics and Earthquake Engineering, Vol. 31, No. 5-6, pp. 773–784 (2010).

    [14] Chen, S. S. and Shi, J. Y., “A simplified model for coupled horizontal and rocking vibrations of embedded foundations,” Soil Dynamics and Earthquake Engineering, Vol. 48, No. 5, pp. 209–219 (2013).

    [15] Wang, H., Liu, W., Zhou, D., Wang, S., Du, D., “Lumped-parameter model of foundations based on complex Chebyshev polynomial fraction,” Soil Dynamics and Earthquake Engineering, Vol. 50, pp. 192–203 (2013).

    [16] 陳冠宇,「埋置基礎與層狀土壤互制系統於垂直振動下之簡化分析模式」,碩士論文,國立臺灣科技大學,臺北 (2020)。

    [17] Wong, H. L. and Luco, J. E., “Tables of impedance functions for square foundations on layered media,” Soil Dynamics and Earthquake Engineering, Vol. 4, No. 2, pp. 64–81 (1985).

    [18] Gueguen, P. and Astorga, A., “The torsional response of civil engineering structures during earthquake from an observational point of view,” Sensors, 21, 342 (2021).

    [19] Chen, S. S., Liao, Ke. Hung., Shi, J. Y., “A dimensionless parametric study for forced vibrations of foundation-soil systems,” Computer and Geotechnics, Vol. 76, pp. 184–193 (2016).

    QR CODE