簡易檢索 / 詳目顯示

研究生: 蔡子勛
Tzu-Hsun Tsai
論文名稱: 導離子無機薄膜助效觸媒反應之研究
Enhanced Performance of Catalytic Reaction induced by ion-conductive Membrane Reactor
指導教授: 林昇佃
Shawn D. Lin
口試委員: 林昇佃
Shawn D. Lin
洪逸明
I-Ming Hung
胡蒨傑
Chien-Chieh Hu
江志強
jcjiang@mail.ntust.edu.tw
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 薄膜反應器CO2脫氧反應甲烷蒸氣重組
外文關鍵詞: membrane reactor, oxygen stripping of CO2, steam reforming of methane
相關次數: 點閱:300下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討導離子氧化物薄膜反應器(membrane reactor)製作,藉以分析導離子薄膜對於中溫甲烷產氫以及CO2脫氧反應的助效作用。薄膜反應器製作部分,包含設計與部件材料選擇,再檢驗反應器的氣密性,當以高溫陶瓷膠環狀固定膜材,發現管壁粗糙度會影響薄膜封裝氣密性。研究比較觸媒在三種不同反應系統(玻璃填充床反應器、非導離子陶瓷薄膜反應器與導離子薄膜反應器)的反應效能,分別探討GDC(Gd-doped CeO2)導氧離子薄膜對CO2脫氧反應的助效,以及SCZY(Sr(Ce0.6Zr0.4)0.8Y0.2O3-δ)導氫離子薄膜對甲烷蒸氣重組反應的助效,研究結果顯示自製薄膜反應器中觸媒的還原特徵與反應特徵與玻璃填充床反應器中特徵一致。Ce3Fe7Ox觸媒搭配GDC薄膜系統的CO2脫氧的效能提升約50%,顯示GDC薄膜的導氧離子特性能助效觸媒反應。另嘗試施加電場測試薄膜離子傳導性提升觸媒反應的影響,結果顯示在Ce3Fe7Ox觸媒反應活性終止後施加電場對CO2脫氧反應並無再提升的作用,但此測試也可能受到反應器薄膜二側阻抗過大所影響。在SCZY薄膜對Ni/LZC觸媒觸媒催化甲烷蒸氣重組反應的探討,結果顯示SCZY薄膜會提升500°C下甲烷轉化率,並不會造成積碳現象或顯著改變CO生成選擇率。在薄膜反應器施加電場對穩態操作下的甲烷轉化率並沒有明顯提升。


This study explores membrane reactors enhancement by ion-conducting membrane on the catalytic reaction of steam reforming of methane and oxygen stripping of CO2, separately the fabrication of membrane reactor is firstly discussed, including design and component material selection, gas leak proof check for confirming the design. The membrane is fixed in place using ceramic adhesive. It is found that the tube wall roughness will affect the sealing of membrane. We compare the reaction efficiency of catalysts in three different reaction systems (packed bed glass reactor, membrane reactor with ceramic non-porous membrane and with ion-conducting membrane reactor), to identify the effect of GDC (Gd-doped CeO2) oxygen ion conducting membrane on oxygen stripping of CO2 and the effect of SCZY (Sr(Ce0.6Zr0.4)0.8Y0.2O3-δ) hydrogen ion conducting membrane on steam reforming of methane. The results show that the catalyst in different system show the same reduction characteristics. The Ce3Fe7Ox catalyst combined with GDC membrane system can have approximately 50% increase efficiency of oxygen stripping of CO2, which shows that the oxygen ion-conducting characteristic of GDC membrane enhance the catalyst reaction. A further attempt by applying an electric field across the ion conducting membrane cannot promote the catalytic reaction after the Ce3Fe7Ox catalyst reaction activity terminated. However, this test results may be affected by the excessive impedance across the membrane. The Ni/LZC catalyst combined with SCZY membrane system is also formed to increase methane conversion at 500°C without coking or significantly changed CO selectivity. The application of an electric field in the membrane reactor does not further improve the methane conversion under steady-state operation.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 薄膜反應器設計 3 1.2.2 導氧離子無機薄膜材料 12 1.2.3 導氫離子無機薄膜材料 14 1.3 研究目的與方法 15 第2章 實驗設備與方法 16 2.1 實驗架構 16 2.2 藥品與儀器設備 17 2.2.1 藥品 17 2.2.2 氣體 18 2.2.3 使用儀器 19 2.3 觸媒製備 20 2.3.1 共沉澱法(Co-Precipitation)製備Ce3Fe7Ox材料[2] 20 2.3.2 共沉澱法(Co-Precipitation)製備Ni/LZC材料[1] 21 2.4 薄膜製備 22 2.4.1 共沉澱法(Co-Precipitation)製備Gd0.1Ce0.9O1.95材料 22 2.4.2 檸檬酸絡合法(Citrate-complexation)製備Gd0.1Ce0.9O1.95材料 23 2.4.3 GDC薄膜製備 23 2.5 薄膜封裝與測試 24 2.5.1 薄膜封裝 24 2.5.2 薄膜氣密性測試與滲透側氣體分析 24 2.6 材料特性以及反應鑑定 26 2.6.1 X光粉末繞射儀(XRD) 26 2.6.2 程溫還原反應(TPR) 27 2.6.3 掃描式電子顯微鏡(SEM) 27 2.6.4 質譜儀(Mass Spectrometer) 28 2.6.5 熱重分析儀(TGA) 29 2.6.6 電化學阻抗分析 30 2.6.7 步階CO2脫氧反應 30 2.6.8 甲烷蒸氣重組反應 31 2.6.9 薄膜反應器施加電場 32 第3章 結果與討論 33 3.1 中高溫薄膜反應器設計與製作 33 3.1.1 薄膜反應器構造與設計 33 3.1.2 薄膜反應器氣密性測試 39 3.2 導氧離子薄膜誘導觸媒反應測試 43 3.2.1 薄膜製作特性鑑定以及氣密性測試 43 3.2.2 薄膜反應器的CO2脫氧催化反應分析 56 3.2.3 施加電場對CF-MR-GDC催化CO2脫氧反應的影響 74 3.3 導氫離子無機薄膜反應器 79 3.3.1 薄膜特性鑑定以及氣密性測試 79 3.3.2 薄膜反應器的甲烷蒸氣重組反應分析 84 3.3.3 施加電場對薄膜反應器觸媒活性反應影響 94 第4章 結論 97 Reference 99 第5章 附錄 105

[1] 林力雋, "混合氧化物擔載鎳觸媒應用於中溫甲烷蒸汽重組反應," 化學工程系, 國立臺灣科技大學, 台北市, 2016.
[2] 黃敬庭, "鐵修飾氧化鈰應用於中溫二氧化碳脫氧反應," 化學工程系, 國立臺灣科技大學, 台北市, 2019.
[3] 陳光裕, "吸附助效甲烷蒸氣重組反應中氧化鈣吸附劑對鎳鑭鈰鋯觸媒的影響," 化學工程系, 國立臺灣科技大學, 台北市, 2020.
[4] W. Jin, C. Zhang, X. Chang, Y. Fan, W. Xing, and N. Xu, "Efficient catalytic decomposition of CO2 to CO and O2 over Pd/mixed-conducting oxide catalyst in an oxygen-permeable membrane reactor," Environmental science & technology, vol. 42, no. 8, pp. 3064-3068, 2008.
[5] Y. Wei, W. Yang, J. Caro, and H. Wang, "Dense ceramic oxygen permeable membranes and catalytic membrane reactors," Chemical Engineering Journal, vol. 220, pp. 185-203, 2013.
[6] J. Armor, "Applications of catalytic inorganic membrane reactors to refinery products," Journal of Membrane Science, vol. 147, no. 2, pp. 217-233, 1998.
[7] M. P. Harold and C. Lee, "Intermediate product yield enhancement with a catalytic inorganic membrane—II. Nonisothermal and integral operation in a back-mixed reactor," Chemical engineering science, vol. 52, no. 12, pp. 1923-1939, 1997.
[8] Y. Yan, M. E. Davis, and G. R. Gavalas, "Use of diffusion barriers in the preparation of supported zeolite ZSM-5 membranes," Journal of membrane science, vol. 126, no. 1, pp. 53-65, 1997.
[9] Y. Yan, M. E. Davis, and G. R. Gavalas, "Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment," Journal of Membrane Science, vol. 123, no. 1, pp. 95-103, 1997.
[10] H. Hsieh, "Inorganic membrane reactors," Catalysis Reviews, vol. 33, no. 1-2, pp. 1-70, 1991.
[11] A. Criscuoli, A. Basile, and E. Drioli, "An analysis of the performance of membrane reactors for the water–gas shift reaction using gas feed mixtures," Catalysis Today, vol. 56, no. 1-3, pp. 53-64, 2000.
[12] J. Coronas and J. Santamarıa, "Catalytic reactors based on porous ceramic membranes," Catalysis Today, vol. 51, no. 3-4, pp. 377-389, 1999.
[13] G. Ranieri, R. Mazzei, Z. Wu, K. Li, and L. Giorno, "Use of a ceramic membrane to improve the performance of two-separate-phase biocatalytic membrane reactor," Molecules, vol. 21, no. 3, p. 345, 2016.
[14] S.-T. Hwang, K. Kammermeyer, and A. Weissberger, Membranes in separations. Wiley New York, 1975.
[15] A. J. Burggraaf and L. Cot, Fundamentals of inorganic membrane science and technology. Elsevier, 1996.
[16] X. Tan and K. Li, Inorganic membrane reactors: fundamentals and applications. John Wiley & Sons, 2015.
[17] F. Gallucci and A. Basile, "Pd–Ag membrane reactor for steam reforming reactions: a comparison between different fuels," International journal of hydrogen energy, vol. 33, no. 6, pp. 1671-1687, 2008.
[18] N. Itoh, "A membrane reactor using palladium," AIChE Journal, vol. 33, no. 9, pp. 1576-1578, 1987.
[19] S.-T. Hwang, "Inorganic membranes and membrane reactors," Korean Journal of Chemical Engineering, vol. 18, no. 6, pp. 775-787, 2001.
[20] M. S. Saha, D. K. Paul, B. A. Peppley, and K. Karan, "Fabrication of catalyst-coated membrane by modified decal transfer technique," Electrochemistry communications, vol. 12, no. 3, pp. 410-413, 2010.
[21] B. Millington, V. Whipple, and B. G. Pollet, "A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique," Journal of Power Sources, vol. 196, no. 20, pp. 8500-8508, 2011.
[22] T. Wang, Q. Wang, Y. Wang, Y. Da, W. Zhou, Y. Shao, D. Li, S. Zhan, J. Yuan, and H. Wang, "Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells," Angewandte Chemie, vol. 131, no. 38, pp. 13600-13605, 2019.
[23] A. Julbe, D. Farrusseng, and C. Guizard, "Porous ceramic membranes for catalytic reactors—overview and new ideas," Journal of Membrane Science, vol. 181, no. 1, pp. 3-20, 2001.
[24] V. Zaspalis, W. Van Praag, K. Keizer, J. Van Ommen, J. Ross, and A. Burggraaf, "Reactions of methanol over catalytically active alumina membranes," Applied catalysis, vol. 74, no. 2, pp. 205-222, 1991.
[25] T. Tsuru, T. Kan-no, T. Yoshioka, and M. Asaeda, "A photocatalytic membrane reactor for VOC decomposition using Pt-modified titanium oxide porous membranes," Journal of Membrane Science, vol. 280, no. 1-2, pp. 156-162, 2006.
[26] X. Tan, K. Li, A. Thursfield, and I. Metcalfe, "Oxyfuel combustion using a catalytic ceramic membrane reactor," Catalysis today, vol. 131, no. 1-4, pp. 292-304, 2008.
[27] L. Cornaglia, J. Múnera, and E. Lombardo, "Recent advances in catalysts, palladium alloys and high temperature WGS membrane reactors: a review," International Journal of Hydrogen Energy, vol. 40, no. 8, pp. 3423-3437, 2015.
[28] G. Saracco and V. Specchia, "Catalytic inorganic-membrane reactors: present experience and future opportunities," Catalysis Reviews—Science and Engineering, vol. 36, no. 2, pp. 305-384, 1994.
[29] F. Garcia-Garcia, L. Torrente-Murciano, D. Chadwick, and K. Li, "Hollow fibre membrane reactors for high H2 yields in the WGS reaction," Journal of membrane science, vol. 405, pp. 30-37, 2012.
[30] N. H. Othman, Z. Wu, and K. Li, "A micro-structured La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ hollow fibre membrane reactor for oxidative coupling of methane," Journal of membrane science, vol. 468, pp. 31-41, 2014.
[31] G. Chiappetta, G. Clarizia, and E. Drioli, "Theoretical analysis of the effect of catalyst mass distribution and operation parameters on the performance of a Pd-based membrane reactor for water–gas shift reaction," Chemical Engineering Journal, vol. 136, no. 2-3, pp. 373-382, 2008.
[32] P. N. Dyer, R. E. Richards, S. L. Russek, and D. M. Taylor, "Ion transport membrane technology for oxygen separation and syngas production," Solid State Ionics, vol. 134, no. 1-2, pp. 21-33, 2000.
[33] D. L. Meixner, D. D. Brengel, B. T. Henderson, J. M. Abrardo, M. A. Wilson, D. M. Taylor, and R. A. Cutler, "Electrochemical oxygen separation using solid electrolyte ion transport membranes," Journal of the Electrochemical Society, vol. 149, no. 9, p. D132, 2002.
[34] S. Smart, J. D. Da Costa, S. Baumann, and W. Meulenberg, "Oxygen transport membranes: dense ceramic membranes for power plant applications," in Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications: Elsevier, 2011, pp. 255-292.
[35] U. F. C. Council, "Introduction to Solid Oxide Fuel Cells Button Cell Testing," US Fuel Cell Council: Washington, DC, USA, 2007.
[36] C. Li, W. Li, J. J. Chew, S. Liu, X. Zhu, and J. Sunarso, "Oxygen permeation through single-phase perovskite membrane: Modeling study and comparison with the dual-phase membrane," Separation and Purification Technology, vol. 235, p. 116224, 2020.
[37] J. Xue, L. Chen, Y. Wei, and H. Wang, "CO2-stable Ce0. 9Gd0. 1O2− δ-perovskite dual phase oxygen separation membranes and the application in partial oxidation of methane to syngas," Chemical Engineering Journal, vol. 327, pp. 202-209, 2017.
[38] V. Kharton, A. Kovalevsky, A. Viskup, F. Figueiredo, A. Yaremchenko, E. Naumovich, and F. Marques, "Oxygen permeability and Faradaic efficiency of Ce0. 8Gd0. 2O2–δ–La0. 7Sr0. 3MnO3–δ composites," Journal of the European Ceramic Society, vol. 21, no. 10-11, pp. 1763-1767, 2001.
[39] S. A. Kumar, P. Kuppusami, S. Amirthapandian, and Y.-P. Fu, "Effect of Sm co-doping on structural, mechanical and electrical properties of Gd doped ceria solid electrolytes for intermediate temperature solid oxide fuel cells," International Journal of Hydrogen Energy, vol. 45, no. 54, pp. 29690-29704, 2020.
[40] T. Setoguchi, M. Sawano, K. Eguchi, and H. Arai, "Application of the stabilized zirconia thin film prepared by spray pyrolysis method to SOFC," Solid State Ionics, vol. 40, pp. 502-505, 1990.
[41] J. Molenda, K. Świerczek, and W. Zając, "Functional materials for the IT-SOFC," Journal of Power Sources, vol. 173, no. 2, pp. 657-670, 2007.
[42] I. Shajahan, J. Ahn, P. Nair, S. Medisetti, S. Patil, V. Niveditha, G. U. B. Babu, H. P. Dasari, and J.-H. Lee, "Praseodymium doped ceria as electrolyte material for IT-SOFC applications," Materials Chemistry and Physics, vol. 216, pp. 136-142, 2018.
[43] R. Fuentes and R. Baker, "Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes," International Journal of Hydrogen Energy, vol. 33, no. 13, pp. 3480-3484, 2008.
[44] J. Sunarso, S. Baumann, J. Serra, W. Meulenberg, S. Liu, Y. Lin, and J. D. Da Costa, "Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation," Journal of membrane science, vol. 320, no. 1-2, pp. 13-41, 2008.
[45] H. A. Shabri, M. H. D. Othman, M. A. Mohamed, T. A. Kurniawan, and S. M. Jamil, "Recent progress in metal-ceramic anode of solid oxide fuel cell for direct hydrocarbon fuel utilization: A review," Fuel Processing Technology, vol. 212, p. 106626, 2021.
[46] H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, "Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production," Solid State Ionics, vol. 3, pp. 359-363, 1981.
[47] H. Iwahara, H. Uchida, and K. Morimoto, "High Temperature Solid Electrolyte Fuel Cells Using Perovskite‐Type Oxide Based on BaCeO3," Journal of the Electrochemical Society, vol. 137, no. 2, p. 462, 1990.
[48] K. S. Knight and N. Bonanos, "The crystal structures of some doped and undoped alkaline earth cerate perovskites," Materials Research Bulletin, vol. 30, no. 3, pp. 347-356, 1995.
[49] H. Iwahara, Y. Asakura, K. Katahira, and M. Tanaka, "Prospect of hydrogen technology using proton-conducting ceramics," Solid State Ionics, vol. 168, no. 3-4, pp. 299-310, 2004.
[50] Y. Liu, L. Yang, M. Liu, Z. Tang, and M. Liu, "Enhanced sinterability of BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ by addition of nickel oxide," Journal of Power Sources, vol. 196, no. 23, pp. 9980-9984, 2011.
[51] Z. Khani, M. Taillades-Jacquin, G. Taillades, D. J. Jones, M. Marrony, and J. Roziere, "Preparation of Nanoparticle Core− Shell Electrolyte Materials for Proton Ceramic Fuel Cells," Chemistry of Materials, vol. 22, no. 3, pp. 1119-1125, 2010.
[52] N. Nasani, D. Ramasamy, I. Antunes, J. Perez, and D. P. Fagg, "Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for Protonic Ceramic Fuel Cells (PCFCs)–A comparative study," Electrochimica Acta, vol. 154, pp. 387-396, 2015.
[53] I.-M. Hung, Y.-J. Chiang, Y.-H. Wang, J. S. Jang, and S.-W. Lee, "Electrical properties and hydrogen flux performance of Sr (Ce0. 6Zr0. 4) 1− xYxO3− δ ceramic proton conductors," International Journal of Hydrogen Energy, vol. 42, no. 34, pp. 22149-22158, 2017.
[54] Z. Tao, L. Yan, J. Qiao, B. Wang, L. Zhang, and J. Zhang, "A review of advanced proton-conducting materials for hydrogen separation," Progress in Materials Science, vol. 74, pp. 1-50, 2015.
[55] 朱茲絜, "具氧空缺的氧化鈰觸媒應用於二氧化碳之氧脫除反應," 化學工程學, 國立臺灣科技大學, 台北市, 2016.
[56] W.-C. Wang, S.-Y. Chen, P.-A. Glans, J. Guo, R.-J. Chen, K.-W. Fong, C.-L. Chen, A. Gloter, C.-L. Chang, and T.-S. Chan, "Towards understanding the electronic structure of Fe-doped CeO 2 nanoparticles with X-ray spectroscopy," Physical Chemistry Chemical Physics, vol. 15, no. 35, pp. 14701-14707, 2013.
[57] D. Wattanasiriwech and S. Wattanasiriwech, "Effects of fuel contents and surface modification on the sol-gel combustion Ce0. 9 Gd0. 1O1. 95 nanopowder," Energy Procedia, vol. 34, pp. 524-533, 2013.
[58] M. Liang, W. Kang, and K. Xie, "Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique," Journal of Natural Gas Chemistry, vol. 18, no. 1, pp. 110-113, 2009.
[59] 趙奕寧, "製備參數及操作條件對鑭鈰鋯混合氧化物擔載鎳觸媒催化甲烷產氫反應的影響," 化學工程系, 國立臺灣科技大學, 台北市, 2018.
[60] M.-J. Uddin and S.-J. Cho, "Reassessing the bulk ionic conductivity of solid-state electrolytes," Sustainable Energy & Fuels, vol. 2, no. 7, pp. 1458-1462, 2018.

QR CODE