簡易檢索 / 詳目顯示

研究生: 蔡旻哲
Min-Zhe Tsai
論文名稱: 有限脈衝響應回授之聲頻應用之混和強健式MASH-21三角積分調變器
A Hybrid Sturdy MASH-21 Delta-Sigma Modulator with FIR Feedback DACs for Audio Applications
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 彭盛裕
Sheng-Yu Peng
陳筱青
Hsiao-Chin Chen
陳信樹
Hsin-Shu Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 80
中文關鍵詞: 三角積分調變器雜訊移頻FIR濾波器類比數位轉換器
外文關鍵詞: Delta-Sigma Modulator, noise shaping, FIR Filter, analog-to-digital converter
相關次數: 點閱:310下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文描述一個聲頻應用之二加一階混和強健式多級串接三角積分調變器,使用標準0.18μm互補式金氧半導體製程。和傳統的強健式多級串接三角積分調變器相比,本篇論文提出之混和式強健式多級串接三角積分調變器同時使用了反向積分器與非反向積分器來達到將第一級量化雜訊消除的功能,所以可以提供多3-dB的訊號-量化雜訊比。在第一級與第二級中間插入了被動低通濾波器來壓抑頻寬外的量化雜訊,而不是透過調整係數來穩定系統。同時,採用輸入前饋路徑與有限脈衝響應回授來提升線性度和降低轉導放大器對迴轉率的需求。
此晶片採用TSMC 0.18μm 1P6M的互補金氧半導體製程來實現。在1.8伏特的供應電壓下,取樣頻率為6.144百萬赫(MHz)。訊號頻寬為聲頻應用之24千赫(kHz)與128倍超取樣率。此調變器可達到峰值92.39 dB的信號雜訊及失真比,具有15.06位元等效解析度,94.73 dB信號雜訊比與 95.56 dB動態範圍。在這樣的結果下得到的FoM為699 fJ/conversion-step與168.8dB。消耗功率為1146 μW.


This thesis presents a Hybrid Sturdy MASH-21(HSMASH-21) Delta-Sigma Modulator (DSM) for audio applications using standard 0.18μm CMOS technology. Compare with the conventional Sturdy-MASH architecture, the HSMASH-21 DSM employs inverting and non-inverting switched capacitor integrators to eliminate the first-stage quantization noise, resulting in a 3-dB SQNR improvement. The passive low pass filter is inserted between the first and the second integrator to suppress the out-of-band quantization noise, instead of adjusting coefficients to stabilize the system. Meanwhile, an input feedforward path and the FIR DACs are employed to improve linearity and reduce the slew rate requirement of the OTA.
This DSM chip was implemented in TSMC 0.18μm CMOS process. Operated at 1.8V supply voltage with a 6.144 MHz sampling rate, the proposed HSMASH-21 DSM is designed to work with a bandwidth of 24 kHz for audio applications. Thus, the OSR is 128. The proposed modulator achieves a 92.39 dB peak SNDR, which is equivalent to possessing 15.06 effective number of bits (ENOB). It also achieves a 94.73 dB SNR, and a 95.56 dB dynamic range (DR). Two popular Figure-of-Merits (FoMs) are 699 fJ/conversion-step and 168.8 dB, respectively. The power consumption of the DSM chip is 1146 μW.

致謝 i 摘要 iii Abstract iv CONTENTS v LIST OF FIGURE viii LIST OF TABLES xiii Chapter1 Introduction - 1 - 1.1 Motivation - 1 - 1.2 Literature Review - 2 - 1.3 Thesis Organization - 2 - Chapter2 Theorems of Delta-Sigma Modulator - 3 - 2.1 Introduction of Analog-to-digital converter - 4 - 2.2 Sampling Theorem - 5 - 2.3 Definition of Performance - 6 - 2.3.1 Signal-to-Noise Ratio (SNR) - 6 - 2.3.2 Signal-to-Noise and Distortion Ratio (SNDR) - 7 - 2.3.3 Dynamic Range (DR) - 7 - 2.3.4 Effective Number of Bits (ENOB) - 8 - 2.3.5 Figure of Merit (FoM) - 8 - 2.4 Quantization Error - 8 - 2.5 Oversampling - 11 - 2.6 Noise-Shaping - 13 - 2.7 Architectures of the Delta-Sigma Modulator - 15 - 2.7.1 Single-Loop Structure - 15 - 2.7.2 MASH - 16 - 2.7.3 Sturdy-MASH - 18 - 2.8 Stability of the Delta-Sigma Modulator - 19 - Chapter3 - 20 - 3.1 Hybrid Sturdy MASH-21 Delta-Sigma Modulator - 20 - 3.1.1 Prototype of HSMASH-21 System - 20 - 3.1.2 Proposed System - 22 - 3.2 System Design - 24 - 3.2.1 Reducing Out-of-band Gain in a HSMASH-21 DSM - 24 - 3.2.2 Dynamic-Range Scaling - 26 - 3.3 System Simulation Result (MATLAB Simulink) - 27 - 3.4 Feedback Path Mismatch Problem - 30 - 3.5 NON-ideality Effects of Integrator - 32 - 3.5.1 Modeling Nonlinear DC Gain Curve [17] - 33 - 3.5.2 Behavior Model of Nonlinear DC Gain - 33 - 3.6 Specification of Operational Amplifier - 34 - Chapter4 Circuits and Simulation Results - 36 - 4.1 Integrators - 36 - 4.1.1 Inverting integrator - 37 - 4.1.2 Non-inverting integrator - 39 - 4.2 Operational Transconductance Amplifier - 41 - 4.2.1 Two-Stage OTA with Class-AB Output Stage [6] - 41 - 4.2.2 Low Quiescent Current Class-AB Current Mirror OTA [7] - 44 - 4.3 Quantizer - 46 - 4.4 Bootstrapped Switch - 47 - 4.5 Non-overlapping Clock Generator - 49 - 4.6 Complete Modulator Circuit - 50 - 4.7 PSS/PNOISE Simulation - 52 - 4.7.1 Integrator Noise Analysis - 52 - 4.7.2 PNOISE Simulation Results - 55 - 4.8 Simulation Results - 56 - 4.8.1 Simulink Simulation Result - 56 - 4.8.2 Circuit Pre-simulation Results - 57 - Chapter5 Measurement - 59 - 5.1 Layout Consideration - 59 - 5.1.1 Layout - 59 - 5.1.2 Post-Simulation Results - 62 - 5.2 Measurement Environment Setup - 63 - 5.2.1 Regulator - 63 - 5.2.2 Filter Tank Circuit - 64 - 5.2.3 Input Driving Circuit - 64 - 5.2.4 Measurement Environment - 65 - 5.3 Measurement Results - 66 - 5.4 Performance Summary and Comparison - 69 - 5.5 Discussion - 70 - Chapter6 Conclusion - 75 - 6.1 Summary - 75 - 6.2 Future Works - 75 - Reference - 78 -

[1] R. Schreier and G. Temes, Understanding Delta-Sigma Data Converters Piscataway, NJ, USA: Wiley, 2005.
[2] S. Rabii and B. A. Wooley, The Design of Low-Voltage, Low-Power Sigma-Delta Modulators. Norwell, MA: Kluwer, 1999.
[3] N. Maghari, S. Kwon and U. Moon, "74 dB SNDR Multi-Loop Sturdy-MASH Delta-Sigma Modulator Using 35 dB Open-Loop Opamp Gain," in IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2212-2221, Aug. 2009.
[4] Y. Kwak, K. Cho, H. Kim, S. Lee and G. Ahn, "A 72.9-dB SNDR 20-MHz BW 2-2 Discrete-Time Resolution-Enhanced Sturdy MASH Delta-Sigma Modulator Using Source-Follower-Based Integrators," in IEEE Journal of Solid-State Circuits, vol. 53, no. 10, pp. 2772-2782, Oct. 2018.
[5] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato and A. Baschirotto, "Behavioral modeling of switched-capacitor sigma-delta modulators," in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 3, pp. 352-364, March 2003.
[6] J. Ramirez-Angulo, R. G. Carvajal, J. A. Galan and A. Lopez-Martin, "A free but efficient low-voltage class-AB two-stage operational amplifier," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 568-571, July 2006.
[7] Roh, J. High-Gain Class-AB OTA with Low Quiescent Current. Analog Integr Circ Sig Process 47, 225–228 2006.
[8] O. Oliaei, "Sigma-delta modulator with spectrally shaped feedback," in IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 9, pp. 518-530, Sept. 2003.
[9] S. -H. Liao and J. -T. Wu, "A 1-V 175-uW 94.6-dB SNDR 25-kHz Bandwidth Delta-Sigma Modulator Using Segmented Integration Techniques," in IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2523-2531, Sept. 2019.
[10] J. S. Cho et al., "A 1.2-V 108.9-dB A-Weighted DR 101.4-dB SNDR Audio Sigma-Delta ADC Using a Multi-Rate Noise-Shaping Quantizer," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1315-1319, Oct. 2018.
[11] J. -H. Han, K. -I. Cho, H. -J. Kim, J. -H. Boo, J. S. Kim and G. -C. Ahn, "A 96dB Dynamic Range 2kHz Bandwidth 2nd Order Delta-Sigma Modulator Using Modified Feed-Forward Architecture With Delayed Feedback," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp.1645-1649, May 2021.
[12] Libin Yao, M. S. J. Steyaert and W. Sansen, "A 1-V 140-μW 88-dB audio sigma-delta modulator in 90-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1809-1818, Nov. 2004.
[13] E. Eland, S. Karmakar, B. Gönen, R. van Veldhoven and K. A. A. Makinwa, "A 440-μW, 109.8-dB DR, 106.5-dB SNDR Discrete-Time Zoom ADC With a 20-kHz BW," in IEEE Journal of Solid-State Circuits, vol. 56, no. 4, pp. 1207-1215, April 2021.
[14] J. Roh, S. Byun, Y. Choi, H. Roh, Y. -G. Kim and J. -K. Kwon, "A 0.9-V 60-μW Bit Fourth-Order Delta-Sigma Modulator With 83-dB Dynamic Range," in IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 361-370, Feb. 2008.
[15] T. -H. Chang and C. -Y. Yao, "A 11.75-bit Hybrid Sturdy MASH-21 Δ-Σ Modulator for Audio Applications," 2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Taipei, Taiwan, 2019, pp. 1-2.
[16] R. Schreier, "On the use of chaos to reduce idle-channel tones in delta-sigma modulators," in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 8, pp. 539-547, Aug. 1994.
[17] F. -C. Chen and C. -L. Hsieh, "Modeling Harmonic Distortions Caused by Nonlinear Op-Amp DC Gain for Switched-Capacitor Sigma–Delta Modulators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 9, pp. 694-698, Sept. 2009.
[18] C. C. Enz and G. C. Temes, "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization," in Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
[19] B. Razavi, "The StrongARM Latch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 12-17, Spring 2015.
[20] B. Murmann, "ADC Performance Survey 1997-2022," [Online]. Available:
https://github.com/bmurmann/ADC-survey.

QR CODE