簡易檢索 / 詳目顯示

研究生: 張朝瑀
Chao-Yu Chang
論文名稱: 具研磨液之單晶矽結合能及奈米切削力與溫度分佈估算
Temperature distribution and cutting force with estimation of bonding energy of single-crystal silicon with slurry effect
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 許覺良
Jue-liang Xu
傅光華
KUANG-HUA FUH
成維華
Wei-Hua Chieng
王國雄
Kuo-Shong Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 128
中文關鍵詞: 比下壓能原子力顯微鏡單晶矽基板化學反應層莫氏勢能之結合能
外文關鍵詞: specific down force energy, atomic force microscopy, single-crystal silicon substrate, chemical reaction layer, bonding energy
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
本研究先以下壓力對未浸泡研磨液的單晶矽基板進行原子力顯微鏡(AFM)加工,得出單晶矽基板未浸泡研磨液的比下壓能值。然後再利用較小的下壓力對浸泡室溫研磨液之單晶矽進行AFM加工實驗,以比下壓能理論,得出浸泡室溫研磨液之單晶矽化學反應層範圍內的比下壓能值。並用計算浸泡室溫研磨液之化學反應層厚度的理論模式及實驗方法,獲得浸泡室溫研磨液單晶矽之化學反應層厚度。且在化學反應層厚度內的固定下壓深度情況下,利用比下壓能公式,可推導出在此固定下壓深度之浸泡室溫研磨液單晶矽之下壓力大小。本研究提出創新的計算受室溫研磨液化學反應影響之單晶矽莫氏勢能之結合能計算方法。此計算方法先假設單晶矽之莫氏勢能受研磨液影響之參數α、r0不變,僅有結合能D值改變。所以初始預測D值為以未浸泡研磨液單晶矽之莫氏勢能結合能D值做測試,利用逆解法的概念,先假設初始之D值,再用分子靜力學奈米切削模式模擬出固定下壓深度的下壓力,再與已受室溫研磨液影響之單晶矽比下壓能值所計算出的固定下壓深度的下壓力做比較。依所得之兩個下壓力比較之差距,用最佳化觀念逐步調整莫氏勢能的D值,再用分子動力學奈米切削模式模擬出固定下壓深度的不同D值之下壓力。並將前述兩方法計算所得之兩下壓力的差距的比值應小於收斂值當目標函數,當目標函數達到收斂值,則假設算出的D值為單晶矽受浸泡室溫研磨液化學反應影響之莫氏勢能的結合能D值。本研究最後再用計算所得受室溫研磨液影響之單晶矽莫氏勢能結合能D值,用分子靜力學奈米切削模式模擬切削單晶矽的切削力與下壓力,並與比下壓能法計算所得之受室溫研磨液影響的切削力與下壓力作比較,以驗證所得之受室溫研磨液影響之莫氏勢能的結合能D值為合理。此外本研究亦求用受室溫研磨液影響的莫氏勢能結合能D值,進行分子靜力學奈米切削程式模擬奈米切削單晶矽之等效應力及等效應力分佈,以及因摩擦熱源及塑性熱源產生的溫度提升和溫度分佈,並進一步和以往文獻所做的切削未浸泡研磨液的單晶矽的結果做比較分析。


Abstract
The paper uses down force to perform atomic force microscopic (AFM) machining of single-crystal silicon substrate unsoaked in slurry, and obtains the specific down force energy (SDFE) in the range of the single-crystal silicon substrate unsoaked in slurry. After that, the paper uses a smaller down force to conduct AFM machining experiment of the single-crystal silicon soaked in room-temperature slurry. Using SDFE theory, the paper acquires the SDFE of the single-crystal silicon’s chemical reaction layer soaked in room-temperature slurry. The paper also uses the theoretical model and experimental method for calculating the thickness of the chemical reaction layer soaked in room-temperature slurry, to obtain the thickness of the chemical reaction layer of the single-crystal silicon soaked in room-temperature slurry. Under the circumstances that the pressing depth is fixed within the thickness of chemical reaction layer, the paper SDFE equation to derive the down force size of the single-crystal silicon soaked in room-temperature slurry at such a fixed pressing depth. The paper proposes an innovative method for calculating the bonding energy of Morse potential energy for the single-crystal silicon affected by chemical reaction of room temperature slurry. For this calculation method, it is firstly supposed that the parameters α and r0 for Morse potential energy of single-crystal silicon to be affected by slurry is unchanged, and only the bonding energy D value is changed. Therefore, it is initially predicted that D value is the bonding energy D value of Morse potential energy of the single-crystal silicon unsoaked in slurry, and is used for testing. Employing the concept of inverse method, the paper firstly lets the initial value be D, and then uses molecular statics nanocutting model to simulate the down force at a fixed pressing depth, and then compares it with the down force at a fixed pressing depth calculated by the SDFE of the single-crystal silicon affected by room temperature slurry. Based on the difference in down force resulted after comparison, the paper uses optimization concept to step by step adjust the D value of Morse potential energy, and then uses molecular statics nanocutting model to simulate the down forces of the different D value at a fixed pressing depth and takes the ratio of distance between the two down forces calculated by the above two methods, which should be smaller than the convergence value, as the objective function. When objective function reaches the convergence value, it is supposed that the calculated D value is the bonding energy D value of Morse potential energy of the single-crystal silicon affected by the chemical reaction when being soaked in room temperature slurry. The study finally uses the calculated bonding energy D value of Morse potential energy of the single-crystal silicon affected by room temperature slurry, and uses molecular statics nanocutting model to simulate the cutting force and down force for cutting single-crystal silicon. The paper also compares them with the cutting force and down force affected by room temperature slurry, which are calculated by SDFE method. is tested and verified that the acquired bonding energy D value of Morse potential energy affected by room temperature slurry is reasonable. Besides, the paper also uses the bonding energy D value of Morse potential energy affected by room temperature slurry to simulate, using molecular statics nanocutting equation, the equivalent stress for nanocutting of single-crystal silicon and distribution of equivalent stress, as well as the temperature rise and temperature distribution caused by friction heat source and plastic heat source. Furthermore, the paper makes analysis after comparing with the cutting results of the single-crystal silicon unsoaked in slurry achieved in the past literature.

目錄 誌謝 VII 目錄 VIII 圖目錄 XI 表目錄 XVI 第一章緒論 1 1.1 前言 1 1.2 研究動機及目的 3 1.3 文獻回顧 5 1.3.1 奈米級切削加工實驗之相關文獻 5 1.3.2 分子力學之文獻 7 1.3.3 奈米級模擬切削及切削工件溫度場的文獻 9 1.4 本文架構 14 第二章 比下壓能之理論模型及實驗方法 18 第三章 研磨液化學反應所產生的比下壓能值及化學反應層厚度的計算模式及實驗方法 22 第四章 分子靜力學三維準穩態奈米級切削模式 26 4.1 分子靜力學之基本原理 26 4.1.1 分子作用力及勢能函數 27 4.1.2 截斷半徑法 29 4.1.3 物理參數 31 4.1.4 虎克 吉夫斯(Hooke-Jeeves)搜尋法 31 4.1.5 奈米級切削力之計算 33 第五章 單晶矽的莫氏勢能結合能值計算方法 38 5.1單晶矽加研磨液之化學反應式 38 5.2 受室溫研磨液影響之單晶矽的莫氏勢能結合能計算方法 38 5.2.1實驗規劃及研究方法規劃 38 5.2.2計算受室溫研磨液影響之單晶矽的莫氏勢能之結合能D值方法 41 第六章 等效應變及等效應力計算方法 43 6.1 等效應變及等效應力計算方法 43 6.1.1 等效應變之計算 43 6.1.2 等效應力之計算 49 6.2 被切削工件之提升溫度計算 50 6.2.1 塑性變形熱之提升溫度計算方法 51 6.2.2 摩擦熱之提升溫度計算方法 51 第七章 模擬模型的建構 54 7.1 等應變四面體(constant strain tetrahedron,CST)元素 54 7.2 原子編號的原理 68 第八章 結果與討論 69 8.1 未浸泡研磨液之單晶矽比下壓能值 69 8.2 浸泡室溫研磨液之單晶矽比下壓能值 69 8.3 浸泡研磨液之化學反應層厚度之實驗及計算結果 70 8.5受浸泡室溫研磨液影響之單晶矽基板已固定加工深度方式切削之分子靜力學三維準穩態奈米級切削模擬模式與比下壓能法計算切削力與下壓力 87 8.6 分子靜力學三維準穩態奈米級切削模擬模式模擬切削受浸泡室溫研磨液影響之單晶矽基板之等效應變與應力分析 89 8.7 分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽之切削溫度計算與空氣及水熱傳結果之探討 92 8.7.1分子靜力學三維準穩態奈米級切削模擬模式模擬切削受浸泡室溫研磨液影響之單晶矽基板之切削溫度計算 93 第九章 結論 99 參考文獻 101

參考文獻
[1]. Cheng, M. S., Ho, J. S., Tan, C. H., Wong J. P., Ng L. C., and Toh, C. S., “Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus”, Analytica Chimica Acta, Vol.725, pp.74-80 (2012).
[2]. Wang, Z., Wang, D., Jiao, N., Tung, S., and Dong, Z., “A Nanochannel System Fabricated by MEMS Microfabrication and Atomic Force Microscopy”, Nano/Micro Engineered and Molecular Systems, pp.372-376 (2011).
[3]. Salieb-Beugelaar, G. B., Teapal, J., van Nieuwkasteele, J., Wijnperle, D., Tegenfeldt, J. O., Lisdat, F., van den Berg, A., Eijkel, and J. C. T., “Field-Dependent DNA Mobility in 20nm High Nanoslits”, Nano Letters, Vol.8, No.7, pp.1785-1790 (2008).
[4]. Fologea, D., Gershow, M., Ledden, B., McNabb, D. S., Golovchenko, J. A., and Li, J., “Detecting Single Stranded DNA with a Solid State Nanopore”, Nano Letters, Vol.5, No.10, pp.1905-1909 (2005).
[5]. Maleki, T., Mohammadi, S., and Ziaie, B., “A nanofluidic channel with embedded transverse nanoelectrodes”, Nanotechnology, Vol.20, No.10 (2009).
[6]. Lübben, J. F. and D. Johannsmann, “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir,Vol.20, No.9, pp. 3698-3703 (2004).
[7]. Fang, T. H., Weng, C. I., and Chang, J. G., “Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol.11, No.5, pp.181-187 (2000).
[8]. Z.Q. Wang, Jiaoa, N. D., Tungc, S., and Donga, Z. L., “Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces”, Applied Surface Science, Vol.257, pp.3627-3631 (2011).
[9]. Tseng, A.A., “A Comparison Study of Scratch and Wear Properties Using Atomic Force Microscopy”, Applied Surface Science, Vol. 256, No.13, pp. 4246- 4252 (2010).
[10]. 林建廷,「應用比下壓能及改變下壓力之單晶矽奈米流道凹槽加工模擬模式建立與實驗研究」,碩士論文,國立台灣科技大學大學機械工程研究所,民國102年
[11]. Irving, J. H. and Kirkwood, J. G., “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics”, J. Chem. Phys., Vol.19, Issue 9, pp. 817-829 (1950).
[12]. Kwon, Y. W. and Jung, S. H., “Atomic model and coupling with continuum model for static equilibrium problems,” Computers and Structures, Computational Structures Technology, Vol.82, Issues 23-26, pp. 1993-2000 (2004).
[13]. IGOR Ye. Telitchev, and OLEG Vinogradov, “A method for quasi-static analysis of topologically variable lattice structures,” International Journal of Computational Methods, Vol.3, Issue 1, pp. 71-81 (2006).
[14]. Jeng, Y. R., and Tan, C. M., “Study of Nanoindentation Using FEM Atomic Model,” Journal of Tribology, Vol.126, Issue 4, pp. 767-774 (2004).
[15]. Hu, S. Y., Ludwig, M., Kizler, P., and Schmauder, S., “Atomistic simulations of deformation and fracture of α-Fe,” Modelling Simul. Mater. Sci. Eng., Vol.6, No.5, pp. 567–586 (1998).
[16]. Saraev, D., Kizler, P., and Schmauder, S., “The influence of Frenkel defects on the deformation and fracture of alpha-Fe single crystals,” Modelling Simul. Mater. Sci., Eng., Vol.7, No.6, pp.1013–1023 (1999).
[17]. 陳雨樵,「以分子模擬方法研究奈米線之機械性質」,碩士論文,國立中正大學機械工程研究所,民國九十五年。
[18]. James, S. and Sundaram, M. M., “A molecular dynamics study of the effect of impact velocity, particle size and angle of impact of abrasive grain in the Vibration Assisted Nano Impact-machining by Loose Abrasives”, Wear,Vol.303, Issue 1-2, pp. 510-518 (2013).
[19]. Lin, Z. C. and Huang, wei-fu., “Simulation of two dimensional Nanoscale cutting copper by Quasi-steady molecular statics Method , Applied Method , Applied Mechanics and Materials, Vol.300-301, pp.265-268 (2013) (EI).
[20]. 林榮慶,簡辰學, 林孟樺,「具空孔缺陷之單晶矽材料之三維分子靜力學奈米級正交切削研究」, SME,論文編號:B9,p.20 (2010).
[21]. Shimada, S., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining”, CIRP Annals, Vol.41, Issue 1, pp.117-120 (1990).
[22]. Childs, T. H. C. and Maewaka, K., “Computer-aided Simulation and Experimental Studies of Chip Flow and Tool Wear in the Turning of Flow Alloy Steels by Cemented Carbide Tools” ,Wear, Vol.139, Issue2, pp. 235-250 (1990).
[23]. Belak, J. and Stowers, I. F., “A Molecular Dynamics Model of the Orthogonal Cutting Process”, Proc. Am. Soc., Precision Eng., pp.76-79 (1990).
[24]. Kim, J. D. and Moon, C. H., “A study on microcutting for the configuration of tools using molecular dynamics”, Journal of Materials Processing Technology, Vol.59, No.4, pp. 309-314 (1995).
[25]. Fang, F. Z., Wu, H., Zhou, W., and Hu, X. T., “A study on mechanism of nano-cutting single crystal silicon”, Journal of Materials Processing Technology, Vol.184, No.1-3, pp. 407-410 (2007).
[26]. Pei, Q. X., Lu, C., Fang, F. Z., and Wu, H., “Nanometric cutting of copper: A molecular dynamics study”, Computational Materials Science, Vol.37, No.4, pp.434-441 (2006).
[27]. Inamura, T. and Takezawa, N., “Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool”, Int. J. Japan Soc. Prec. Eng., Vol.25, No. 4, pp. 259-266 (1991).
[28]. Inamura, T. and Takezawa, N., “Atomic-Scale Cutting in a Computer Using Crystal Models of Copper and Diamond”, CIRP Annals, Vol.41, No. 1, pp. 121-124 (1992).
[29]. Inamura, T., Takezawa, N., and, Kumaki, Y., “Mechanics and energy dissipation in nanoscale cutting”, CIRP Annals, Vol.42, No.1, pp.79-82 (1993).
[30]. Cai, M. B., Li, X. P., and Rahman, M., “Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, International Journal of Machine Tool & Manufacture, Vol.47, Issue 1, pp.75–80 (2007).
[31]. Cai, M. B., Li, X. P., and Rahman, M., “Characteristics of dynamic hard particles in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear”, Wear, Vol.263, Issue7-12, pp.1459-1466 (2007).
[32]. Cai, M. B., Li, X. P., and Rahman, M., “Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, Journal of Materials Processing Technology, Vol.192-193, No.1, pp. 607-612 (2007).
[33]. Tanaka, H. and Shimada, S., “Requirements for Ductile-mode Machining Based on Deformation Analysis of Mono-crystalline Silicon by Molecular Dynamics Simulation”, CIRP Annals, Vol.56, Issue 1, pp.53-56 (2007).
[34]. Tang, Q. H., “MD simulation of dislocation mobility during cutting with diamond tip on silicon”, Materials Science in Semiconductor Processing, Vol.10, Issue 6, pp.270-275 (2007).
[35]. Shimada, S., “Molecular dynamics analysis of nanometric cutting process”, CIRP Annals, Vol.29, No.4, pp.283-289 (1995).
[36]. Goel, S., Luo, X., Reuben, R. L., and Pen, H., “Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon”, Wear, Vol.284-285, No.25, pp.65-72 (2012).
[37]. Goel, S., Luo, X., Reuben, R. L., and Agrawal, A., “Diamond machining of silicon: A review of advances in molecular dynamics simulation”, Vol.88, pp.131-164 (2015).
[38]. Cheng, K., Luo, X., Ward, R., and Holt, R., “Modeling and simulation of the tool wear in nanometric cutting” Vol 255, pp.1427-1432 (2003).
[39]. Lin, Z. C. and Huang, J. C., “A nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique”, Nanotechnology, Vol.15, No.5, pp.510-519 (2004).
[40]. Rahman, A., “Correlations in motions of atoms in liquid argon”, Physical Review, Vol.136, No.2A, pp.405-411 (1964).
[41]. Lin, Z. C. and Hsu, Y. C., “Simalation Analysis and Experiment Study of Nanocutting with AFM Probe on the Surface of Sapphire Substrate by Using Three Dimensional Quasi-Steady Molecular statics Nanocutting Madel”, CMC: Computers, Materials, & Continua, Vol.25, No.1, pp.75-106 (2011).
[42]. Girifalco, L. A. and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals”, Physics review, Vol.114, pp. 687-690 (1959).
[43]. Lin, Z. C., Pan, W. C. and Lo, S. P., “A Study of Orthogonal Cutting with Tool Flank Wear and Sticking Behavior on the Chip-Tool Interface”, Journal of Materials Processing Technology, Vol.52, No.2-4, pp.524-538 (1995).
[44]. Huebner, K. H. and Thornton, E. A. The Finite Element Method for Engineers, John Wiley and Sons, New York, pp.284-295 (1995)
[45]. Lin, Z. C. and Hsu, Y. C., “Analysis on Simulation of Quasi-steady Molecular Statics Nanocutting Model and Calculation of Temperature Rise During Orthogonal Cutting of Single-crystal Copper”, CMC: Computers, Materials, & Continua, Vol.27, No.2, pp. 143-178 (2012).
[46]. Rentsch, R. and Inasaki, I., “Effects of Fluids on the Surface Generation in Material Removal Processes-Molecular Dynamics Simulation”, CIRP Annals, Vol.55, Issue 1, pp. 601-604 (2006).
[47]. Lin, Z. C. and Ying-Chih Hsu, 2012, "A Calculating Method for the Fewest Cutting Passes on Sapphire Substrate at a Certain Depth Using Specific Down Force Energy with an AFM Probe", Journal of Materials Processing Tech., Vol. 212, Issue 11, pp. 2321-2331 (SCI
[48]. Lin, Z. C., C, T. Lin. and Y. C. Hsu, 2015,’’ Theoretical Model of Calculating Cutting. Force and Down Force for Nanocutting of V-Shaped Groove on Single-Crystal Silicon, “ Journal of Chinese Society of Mechanical Engineering., Vol36, No.5, pp. 363~374(SCI).
[49]. Reklaitis, G. V., Engineering Optimization: Methods and Application, Wiley; 2 Edition, USA (2006).
[50]. Aly, M. F., Ng, E., Veldhuis, S. C., and Elbestawi, M. A., “Prediction of Cutting Forces in the Micro-machining of Silicon Using a Hybrid Molecular Dynamic-finite Element Analysis Force Model”, International Journal of Machine Tools and Manufacture, Vol.46, Issue 14, pp.1727–1739 (2006).
[51]. 莊華晟,「應用偏移加工法多層切削單晶矽梯形凹槽之切削力及溫度分佈與熱傳模擬分析研究」,碩士論文,國立台灣科技大學機械工程研究所,2016。

無法下載圖示 全文公開日期 2022/08/02 (校內網路)
全文公開日期 2104/08/02 (校外網路)
全文公開日期 2104/08/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE