簡易檢索 / 詳目顯示

研究生: 莫懷祖
Huai-Chu Mo
論文名稱: 標準高溫爐與新型建築部品防火時效之試驗研究
Study on Fire Resistance Testing of New Type Building Assemblies and Standard Furnace
指導教授: 林慶元
Ching-Yuan Lin
口試委員: 何明錦
Ming-Chin Ho
沈子勝
Tzu-Sheng Shen
彭雲宏
Yeng-Horng Perng
江維華
Wei-Hwa Chiang
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 膨脹型防火塗料鐵網錏鐵百葉防火時效標準高溫爐防火區劃
外文關鍵詞: Intumescent fireproof coating, Wire cloth, Iron blind, Fire resistance, Standard furnace, Fire compartment
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以開發外牆開口部之新材料為研究方向,目的是希望開發有關層間牆改善之替代防火區劃部品,利用柴油為燃料之高溫爐進行火災標準試驗,模擬裝置於外牆開口部之替代防火區劃部品的火災行為,以得知該防火區劃部品之防火性能。經試驗後本研究獲致下列結論:
    一、試驗爐之爐壓及爐溫符合CNS 12514要求標準下,在時間為30分鐘,平均爐溫為810℃時,輻射熱為106.3kW/m2,在時間為60分鐘,平均爐溫為946℃時,輻射熱為149.4kW/m2。所量取之輻射熱值均較Sultan之小型試驗爐(Intermediate-Scale Furnace)及大型試驗爐(Full-Scale Furnace)為高,證明本研究所使用試驗爐具有一定程度之代表性。
    二、百葉之簍空縫隙較多者,塗料厚度對降低輻射熱之助益較少。實驗最大輻射熱為1.271 w/cm2,發生在「第Ⅰ型」未噴塗塗料且距離火源0.5 m之位置。不論是否噴塗塗料,當距離與火源超過1.0 m以上時,最大輻射熱亦低於1.0W/cm2。
    三、相同網徑及塗料厚度下,網目愈小,阻擋輻射熱之效果愈佳。在相同網徑及網目下,塗料厚度愈大,阻擋輻射熱之效果亦愈佳。鐵網經噴塗ㄧ定程度之膨脹性防火塗料後,可達到1小時防火時效遮焰性之等級。
    四、網目為#4、#8及#10時,當塗料噴塗兩層之厚度,其60分鐘時之最大輻射熱可降低至木材之輻射引燃值1 w/cm2以下。
    五、本研究提出之新材料應用觀念,不僅可以保持採光及通風的功能,更可以達到阻止延燒的目的,可依建築性能化設計之觀念,應用於建築物之特定位置,本研究雖僅以少數百葉及鐵網做為樣本,但應用概念確實可行,只要活用,即可將各種百葉、鐵網及不同之塗料厚度進行適合之搭配。


    The study focused on new building material using in openings of external wall which main to develop alternative fire barriers on fire compartment, the use of diesel fuel in standard furnace for fire test to determine the fire behavior of new fire device to confirm the fire performance of the new component. After to the tests, the followings are obtained: First, According to the criteria on furnace pressures and temperature in CNS12514, when the furnace operated in good condition, in 30- min time, required average temperature is 810℃and radiant heat is 106.3 kW/m2, in 60-min time, required average temperature is 946℃and radiant heat is 149.4 kW/m2. The tested average radiant heat is higher than tested both in intermediate-scale and full-scale furnace. This verified the test furnace used in this study is representative. Secondly, the louver empty areas more, the thickness of coating to reduce radiant heat is less helpful. From the fire source 0.5m, the experiment 1.271 W/cm2 was measured in non fire spray coating of type-Ⅰ louver. With or without fire coating, when the distance from fire source more than 1.0m, the maximum rediant heat is also under 1.0 W/cm2. Thirdly, the less the smaller span of iron mesh using the same wire diameter and coating thickness provides better heat insulation; a same span of iron mesh with the thicker coating and the same diameter improves resistance to radiant heat. Iron mesh sprayed on certain amount of intumescent fireproof coating can provide 1 hour fire rated integrity. Fourthly, #4, #8 and #10 iron mesh sprayed double-layer coating were found the maximum radiant heat at 60-min can be reduced to 1 w/cm2 which as the ignition radiant rate in wood. Lastly, the concept of new-material application in this study provides not only nature light and ventilation performance but also preventing fire spread and can be applied in performance-base design buildings for special spaces. Although only few iron mesh specimens were tested but it proves the test method is applicable. The various iron mesh with different coated thickness can be proceeded in utilizing the concept of this study.

    中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 V 目錄 Ⅵ 圖目錄 X 表目錄 XII 符號表 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究範圍 3 1.3 研究方法與流程 4 第二章 標準高溫爐之基礎研究 5 2.1 前言 5 2.2 實驗儀器與方法 6 2.2.1 標準高溫爐 6 2.2.2 爐內熱電偶 7 2.2.3 輻射計 7 2.2.4 試驗步驟及要求 8 2.3 量測結果與討論 9 2.3.1 第一部份 9 2.3.2 第二部份 10 2.4 小結 11 第三章 外牆開口部防火新材料開發研究 20 3.1 前言 20 3.2 試驗過程與方法 22 3.2.1 錏鐵百葉試體 22 3.2.2 鐵網試體 22 3.2.3 標準試驗爐 23 3.2.4 量測設備 24 3.3 結果與討論 24 3.3.1 錏鐵百葉試體觀察 25 3.3.2 錏鐵百葉試體之輻射熱 25 3.3.3 鐵網試體觀察 26 3.3.4 試體之輻射熱 28 3.3.5 試體實際應用 29 3.4 小結 30 第四章 結論 37 參考文獻 39 附錄 投稿文章英文版 49 著作 73 作者簡介 75

    [1]莊英宏,「建築區劃空間開口設備之遮煙與阻熱性能研究」,國立台灣科技大學建築系,博士論文,2010。
    [2]莊英吉,「建築物防火區劃構件與部品之全尺寸火災試驗設備及方法開發」,國立台灣科技大學建築系,博士論文,2007。
    [3]建築技術規則,營建雜誌社編印,2009。
    [4]陳柏宏,「火災對建築物外牆加熱行為之研究」,國立台灣科技大學營建工程系,博士論文,2007。
    [5]原有合法建築物防火避難設施及消防設備改善辦法,內政部101.4.10台內營字第1010802369號令,2010年4月10日發布。
    [6]莊英吉、林慶元,「輻射延燒時建築物外牆開口與鄰棟之安全距離」,中國土木水利工程學刊,第十三卷,第四期,第715~722頁,2001。
    [7]Ching-Yuan Lin, Shinichi Sugahara and Tomohiro Naruse, “Emergence-limit of flames from a compartment opening - a thought on some experiment results,” Journal of Construction Engineering, AIJ, No.419, 163-168, 1991.
    [8]Ching-Yuan Lin, “Study of exposure fire spread between buildings by radiation,” Journal of the Chinese Institute of Engineers, 23(4), 439-504, 2000.
    [9]Ying-Ji Chuang, Chung-Pi Luan, Ying-Hung Chuang, Chieh-Hsin Tang and Ching-Yuan Lin, “Experimental study of fire behavior in a full-scale building compartment with different spandrel-curtain length,” Journal of Applied Fire Science, 15(2), 101-118, 2006.
    [10]P. H. Thomas and M. Law, “The projection of flames from buildings on fire,” Fire Prev. Sci. Technol., 10, pp. 19-26, 1974.
    [11]J. G. Quintiere and T. G. Cleary, “Heat flux from flames to vertical surfaces,” Fire Technology, 30(2), 209-231, 1994.
    [12]T. Z. Harmathy, “A new look at compartment fire.” Part I, Fire Technology, 8(3), 197-217, 1972.
    [13]T. Z. Harmathy, “A New Look at Compartment Fire,” Part II, Fire Technology, 8(4), 327-351, 1972.
    [14]Z. Ma and P. Makelainen, “Parametric temperature-time curves of medium compartment fires for structural design,” Fire Safety Journal, 34(4), 361-375, 2000.
    [15]Ying-Ji Chuang, Ying-Hung Chuang and Ching-Yuan Lin, “Fire tests to study heat insulation scenario of galvanized rolling shutters sprayed with intumescent coatings,” Materials and Design, 30(7), 2576-2583, 2009.
    [16]Ying-Ji Chuang, Chieh-Hsin Tang, Po-Hung Chen, Ying-Hung Chuang and Ching-Yuan Lin, “Indicative fire tests to investigate heat insulation scenario of wired glasses sprayed with intumescent coatings,” Journal of Coatings Technology and Research, 9(2), 143-150, 2012.
    [17]M.A. Sultan, “Incident heat flux measurements in floor and wall furnaces of different sizes,” Fire and Materials, 30(6), 383-396, 2006.
    [18]CNS 12514, “Method of fire resistance test for structural parts of building,” 2005.
    [19]M. Law, “Fire grading and fire behaviour,” Fire Safety Journal, 17(2), 147-153, 1991.
    [20]A.J.M. Heselden, “Parameters determining the severity of fire,” Proceedings of the Symposium held at the Fire Research Station, Boreham Wood, 19-28, 1967.
    [21]賴耿陽,「熱計測、溫度測定實務」,復漢書局,1986。
    [22]CNS 5534, “Thermocuples,” 1982.
    [23]ISO 834-1, “Fire-resistance tests-elements of building construction: Part1: General requirements,” 1999.
    [24]ISO 3008, “Fire-resistance tests: door and shutter assemblies,” 2006.
    [25]NFPA 251, “Standard methods of tests of fire resistance of building construction and material,” 2006.
    [26]JIS A 1304, “Method of fire resistance test for structural parts of buildings,” 1994.
    [27]EN 81-58, “Safety rules for the construction and installation of lifts. Examination and tests. Landing doors fire resistance test,” 2003.
    [28]CNS 14803, “Method of fire resistance test for rolling shutter of buildings,” 2004.
    [29]CNS 14815, “Method of fire resistance test for fire fixed window of buildings,” 2004.
    [30]CNS 11227, “Method of fire resistance test for fire door of buildings,” 2001.
    [31]UL 263, “Fire tests of building construction and materials,” 1997.
    [32]UL 10B, “Fire tests of door assemblies,” 1997.
    [33]ASTM E119, “Standard test methods for fire tests of building construction and materials,” 1997.
    [34]BS 476-22, “Fire tests on building materials and structures. Methods for determination of the fire resistance of non-loadbearing elements of construction,” 1987.
    [35]AS 1530.4, “Methods for fire tests on building materials, components and structures – Part 4: Fire-resistance tests of elements of building construction,” 1997.
    [36]BS EN 1634-1, “Fire resistance test for doors and shutter assemblies-Part 1: Fire doors and shutters,” 2000.
    [37]GA 109, “Testing methods for landing door fire protection,” 1995.
    [38]CNS 14652, “Glossary of terms used for fire protection in building – fire test,” 2008.
    [39]UL Fire Resistance Design Directory: Underwriters Laboratories Inc., 2008.
    [40]M.C. Yew and N.H. Ramlu Sulong, “Fire-resistive performance of intumescent flame-retardant coatings for steel,” Materials and Design, 34, 719-724, 2012.
    [41]C. Bailey: “Indicative fire tests to investigate the behaviour of cellular beams sprayed with intumescent coatings,” Fire Safety Journal, 39(8), 689-709, 2004.
    [42]X. Chen, T. He and J. Wen, “The quality discrimination of fire proof paints’, Fire Technique and Products Information,” 8, 74-75, 2004.
    [43]P.-H. Chen, C.-P. Luan, Y.-J. Chuang, C.-H. Tang and C.-Y. Lin, “Safety evaluation of vertical drop fire shutter of buildings in fires,” Journal of Applied Fire Science, 14(4), 303-325, 2005.
    [44]T. Lennon and D. Moore, “The natural fire safety concept: full-scale tests at Cardington,” Fire Safety Journal, 38(7), 623-643, 2003.
    [45]I. D. Bennetts, K.A.M. Moinuddin, C.C. Goh and I.R. Thomas, “Testing and factors relevant to the evaluation of the structural adequacy of steel members within fire-resistant elevator shafts,” Fire Safety Journal, 40(8), 698-727, 2005.
    [46]P.-H. Chen, Y.-J. Chuang, Y.-H. Chuang, C.-Y. Lin and C.-H. Huang, “Full-scale fire tests to study fire behaviors of elevator landing doors,” Journal of Applied Fire Science,15(4), 309-328, 2006.
    [47]D. Joyeux, “Experimental investigation of fire door behaviour during a natural fire”, Fire Safety Science, 37(6), 605-614, 2002.
    [48]M. Law, “A relationship between fire grading and building design and contents,” JFRO Fire Research Note, 877, 1971.
    [49]O. Pettersson, “The connection between a real fire exposure and the heating conditions according to standard, fire resistance tests with special application to steel structures,” in European Convention for Constructional Steelwork, CECM-III-74-2E, Chapter II, 1974.
    [50]E. G. Butcher and A.C. Parnell, “Designing for fire safety,” Chichester, New York, Wiley, 1983.
    [51]Z. Ma and P. Makelainen, “Parametric temperature-time curves of medium compartment fires for structural design,” Fire Safety Journal, 34(4), 361-375, 2000.
    [52]K. Ikeda, H. Mizuochi, M. Hirota, T. Yamaha, Y. Ohmiya, S. Yusa, Y. Yoshiba, H. Yokota and K. Fujii, “Fire test for the heat shading property of the drencher: part 1,” Summaries of Technical Papers of Annual Meeting Architecture Institute of Japan, 249-250, 2002.
    [53]H. Mizuochi, K. Ikeda, M. Hirota, T. Yamaha, Y. Ohmiya, S. Yusa, Y. Yoshiba, H. Yokota and K. Fujii, “Fire test for the heat shading property of the drencher: part 2”, Summaries of Technical Papers of Annual Meeting Architecture Institute of Japan, 251-252, 2002.
    [54]H. Mizuochi, Y. Yoshiba, K. Ikeda, M. Hirota, Y. Ohmiya and S. Yusa, “Studies on integrity evaluation of water-curtain systems (part 2): experiments on efficiency of heat prevention by water-curtain,” Summaries of Technical Papers of Annual Meeting Architecture Institute of Japan, 291-292, 2003.
    [55]T. Hayashi, T. Tsuji, H. Satoh, H. Kurioka, Y. Ohmiya, T. Yamaha and S. Yusa, “Studies on integrity evaluation of water-curtain systems (part 3): experiments on heat-reduction effect by wide-spread water curtain,” Summaries of Technical Papers of Annual Meeting Architecture Institute of Japan, 292-293, 2003.
    [56]Y.-J. Chuang, W.-T. Wu, H.-Y. Chen, C.-H. Tang and C.-Y. Lin, “Experimental investigation of fire wall insulation during a standard furnace fire test with different initial ambient air temperatures,” Journal of Applied Fire Science, 15(1), 41-55, 2006.
    [57]S.Z. Zhong, “Development trend and status on fire-protecting coatings,” Chemical Monthly, 59, pp. 17-23, 2008.
    [58]M. Honma, T. Yamaha, S. Yusa, Y. Ohmiya, T. Tsuji, T. Haychi, K. Ikeda, T. Yamaha and Y. Yoshiba, “Studies on integrity evaluation of water curtain systems (part 1): experiments on heating properties of furnace for specimens which have opening,” Summaries of Technical Papers of Annual Meeting Architecture Institute of Japan, pp. 163-166, 2003.
    [59]E. Mikkola and I.S. Wichman, “On the thermal ignition of combustibles,” Fire and Materials, 14(3), 87-96, 1989.
    [60]C.J. Hilado and R.M. Murphy, “Ignition and flash-fire studies of cellulosic materials,” Fire and Materials, 2(4), 173-176, 1978.
    [61]A.W. Moulen, S.J. Grubits, K.G., Martin and V. P. Dowling, “The early behaviour of combustible wall lining materials,” Fire and Materials, 4(4), 165-172, 1980.
    [62]Australian Building Codes Board, Building Code of Australia (BCA), 1996.
    [63]International Code Council (ICC), International Building Code 2003; Country Club Hills, IL.
    [64]Japanese building standard law, 2012, Architectural Institute of Japan (AIJ), Tokyo, Japan.
    [65]I. Oleszkiewicz, “Vertical separation of windows using spandrel walls and horizontal projections,” Fire Technology, 27(4), 334-340, 1991.
    [66]D. Drysdale, “An introduction to fire dynamics,” New York, Wiley, 1999.
    [67]T. Graham, G. Makhviladze, and J. Roberts: ‘Critical conditions for flashover in enclosed ventilated fires’, Fire Engineering and Emergency Planning, Research and Applications. R. Barham (ed.), E & FN SPON, 18-26, 1996.
    [68]A. Chen and J. Franics, “Calculation of radiant heat flux from post-flashover flames”, Fire Safety Science, 11(4), 228-235, 2002.
    [69]ENV 1991-2-2 Part 2.2, “Actions on structures exposed to fire,” Eurocode 1, 1995.

    無法下載圖示 全文公開日期 2018/06/26 (校內網路)
    全文公開日期 2033/06/26 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE