簡易檢索 / 詳目顯示

研究生: 王昱翔
Yu-Siang Wang
論文名稱: 具虛實軌道導航之無人搬運車控制系統開發
Development of an Automated Guided Vehicle Control System for Cyber and Physical Tracks Navigation
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 李柏磊
Po-Lei Lee
劉益宏
Yi-Hung Liu
鍾聖倫
Sheng-Luen Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 無人搬運車模糊避障虛實路徑A*演算法
外文關鍵詞: automated guided vehicle, fuzzy logic obstacle avoidance, cyber-physical track, A*
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無人搬運車常應用於自動化工廠之物料搬運系統,其運作方式可分為依循實體或光磁軌道行走以及自主導航兩大類型。實體或光磁軌道導引之無人搬運車得根據所佈線之有限路徑行走;因此穩定性高,但路徑彈性上受到限制為其缺點。全自主導航無人搬運車並不需要根據任何佈線之實體或光磁軌道路徑便可行走;因此路徑彈性高,但得搭配高階定位及避障感測器,同時穩定度也是重要考量。有鑑於上述兩大類型之特性,本文提出一結合光學導引路徑以及區段式自主路徑的虛實路徑(Cyber-physical Track)無人搬運車系統,其包括虛實路徑設計、路徑規劃器以及無人搬運車感測與控制器。在虛實路徑設計部分,本文以特定顏色線段路徑進行建構實體路徑(Physical Track),並在實體路徑上設置條碼,以辨識路徑上之特定點(包括工件取放點以及虛實路徑接合點)位置。虛擬路徑(Cyber Track)則是建構於虛實路徑接合點間,由無人搬運車動態自主導航器導引之區段式彈性路徑;因此虛擬路徑為回路軌道上的不需事先建構的捷徑。路徑規劃器則以A*演算法針對軌道上不同工件取放點之派車任務進行虛實路徑規劃。為了因應虛實路徑規劃之需求,無人搬運車裝設低成本之線掃描攝影擷取特定顏色線段路徑並進行位置條碼之解碼;配備七組超音波感測器進行障礙物偵測;使用增量式編碼器計算里程與方位;最後開發虛實路徑控制器,並導入模糊避障演算法。最後,本文以一包括六個工件取放點以及四個虛實路徑接合點之回路路徑進行探討,並以相關實驗結果驗證此一虛實路徑無人搬運車系統可行性。


    Automated guided vehicles (AGVs) are popularly used in material handling systems of automated factories. The operation of an AGV can be categorized as the guidance with rail tracks or optical/ magnetic tracks and the guidance with autonomous navigation. The AGV had to follow the deployed tracks for the guidance with rail tracks or optical/ magnetic tracks. Although such a system exhibits high reliability and simple control schemes, limited track combination is the drawback. Contrarily, autonomous navigation approaches did not need any deployed tracks; however, they employed advanced localization and obstacle detection sensor for navigation. Therefore, autonomous navigation approaches provided high trajectory flexibility; nevertheless, complicated system architecture and reliability would be practical concerns. To combine the advantages of two aforementioned movement systems, this study proposes a cyber-physical track (CPT) AGV system that used optical guidance tracks and regional autonomous tracks as well. The CPT AGV system is composed of the CPT design, path planning and control system. The physical track system is formed by a number of visible track segments with a specific color. Bar code plates were placed beside the track to identify specific locations such as loading/ unloading buffers and cyber and physical track junctions (CPTJs). Cyber tracks were freely formed between any of two distinct CPTJs without a physical track connection, and the regional autonomous navigation was applied accordingly. Hence, cyber represents an invisible short-cut track in a track system. The path planning was realized with A* algorithm that is capable to find an optimal path from CPT segments to deal with a "from-to" movement command. To facilitate the CPT operation, a low cost line scanner camera was used to detect the color track and the identification shown on a bar code plate; seven sonar sensors were used to detect obstacles surrounding the robot; two incremental wheel encoders were desired to obtain the odometry. In addition to sensor modules, a controller was implemented for path planning and fuzzy logic based reactive navigation. Finally, a CPT system containing six loading/ unloading buffers and 4 CPTJs was produced for discussion, and the experimental results were used to evaluate the feasibility of CPT AGV systems.

    誌謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 X 參數對照表 XI 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 3 1.4 文獻回顧 3 1.4.1 路徑規劃之研究 3 1.4.2 兩輪運動學之研究 5 1.4.3 無人搬運車馬達控制之研究 5 1.4.4 影像處理之研究 5 1.4.5 自主避障控制之研究 6 第2章 系統開發架構 8 2.1 硬體架構 8 2.2 環境感測模組 10 2.2.1 超音波感測器控制 10 2.2.2 影像感測器 12 2.3 無人搬運車平台與馬達控制器 14 2.3.1 無人搬運車平台 15 2.3.2 直流馬達驅動板 16 2.3.3 編碼器 17 第3章 策略規劃及避障 18 3.1 場地架構 18 3.2 策略 19 3.3 路徑規劃 21 3.4 模糊控制避障 24 第4章 研究方法 37 4.1 實體路徑循跡控制 37 4.1.1 實體路徑辨識 38 4.1.2 軌道追蹤系統 40 4.2 運動學 43 4.2.1 兩輪運動學 44 4.2.2 無人搬運車定位 46 4.3 條碼辨識 48 第5章 研究結果 50 5.1 路徑規劃 50 5.1.1 實現方法 50 5.2 路徑規劃模擬 52 5.2.1 工作表與運作流程 52 5.2.2 日誌檔 54 5.2.3 模擬結果 58 5.2.4 完成時間與產能效率 60 5.3 模糊控制避障 62 5.3.1 模擬 62 5.3.2 實現方法 64 5.3.3 結果 64 5.4 線掃描攝影機影像辨識 65 5.5 兩輪運動學 68 5.6 整合實現 69 5.6.1 整合之實驗結果 70 5.6.2 虛實路徑與傳統實體路徑比較 72 第6章 結論與未來研究方向 75 6.1 結論 75 6.2 未來研究方向 75 參考文獻 76

    [1] D. Li, K. Niu, “Dijkstra's Algorithm in AGV,” 2014 9th IEEE Conference on Industrial Electronics and Applications, Jun. 2014.
    [2] I. Chabini and S. Lan, “Adaptations of the A* algorithm for the Computation of Fastest Paths in Deterministic Discrete-Time Dynamic Networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 1, pp. 60–74, Mar. 2002.
    [3] 張傑,「以改良的A*演算法規劃較佳導引路徑之研究」,碩士學位論文,大同大學,民國98年。
    [4] 張書豪,「具自主導航與避障之嵌入式移動機器人控制系統開發」,碩士學位論文,國立臺灣科技大學,民國99年。
    [5] M. Huang and D. Huang, “Embedded Fuzzy Logic Control of AGV in Path Tracking,” 2010 IEEE International Conference on Mechatronics and Automation, Aug. 2010.
    [6] 林居廣,「遠端監控與地圖建構之機器人介面設計與控制」,碩士學位論文,大同大學,民國98年。
    [7] L. Li and Y. Liu, “Fuzzy PID with Parameters Self-Turning Used in The Belt Position Departure Control,” 2010 International Conference on E-Health Networking, Digital Ecosystems and Technologies (EDT), Volume: 1, pp. 349 - 352, 2010.
    [8] J. H. Han, S. Yang, and B. U. Lee, “A Novel 3-D Color Histogram Equalization Method With Uniform 1-D Gray Scale Histogram,” IEEE Trans. on Image Process., vol. 20, no. 2, pp. 506–512, Feb. 2011.
    [9] R. Chauhan and S. S. Bhadoria, “An Improved Image Contrast Enhancement Based on Histogram Equalization and Brightness Preserving Weight Clustering Histogram Equalization,” 2011 International Conference on Communication Systems and Network Technologies, Jun. 2011.
    [10] M. Abbasi, M. Danesh, and M. Ghayour, “A Path Fuzzy Planner for Autonomous Underwater Vehicles to Avoid Moving Unknown Obstacles,” 2010 IEEE International Conference on Mechatronics and Automation, Aug. 2010.
    [11] D. Gardeazabal, V. Ponomaryov, and I. Chairez, “Fuzzy Control for Obstacle Avoiding in Mobile Robots Using Stereo Vision Algorithms,” 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, Oct. 2011
    [12] 戚守為,「考量陰影干擾之自主人形機器人於Robocup足球賽避障導航控制」,碩士論文,國立台灣科技大學,民國102年。
    [13] 李仲凱,「針對FIRA HuroCup自主避障競賽所開發之嵌入式人形機器人控制系統」,碩士學位論文,國立臺灣科技大學,民國103年。
    [14] 林思羽,「基於Android之FIRA HuroCup自主視覺避障人型機器人應用程式開發」,碩士學位論文,國立臺灣科技大學,民國104年。
    [15] X. Tao, “Local Obstacle Avoidance Planning of Logistics System AGV Based Vector Field,” MSIE 2011, Jan. 2011.
    [16] D. Li, K. Niu, “Dijkstra's Algorithm in AGV,” 2014 9th IEEE Conference on Industrial Electronics and Applications, Jun. 2014.
    [17] M. F. Misnan, N. H. M. Arshad, R. L. A. Shauri, N. A. Razak, N. M. Thamrin, S. F. Mahmud, and N. A. Aziz, “On-Board Real-Time Single Line Scanning Technique for Used on Unmanned Aerial Vehicle of Low Altitude Mapping,” 2014 IEEE 10th International Colloquium on Signal Processing and its Applications, Mar. 2014.
    [18] S. Khanmohammadi, G. Alizadeh, and M. Poormahmood, “Intelligent Obstacle Avoidance Control Strategy for Wheeled Mobile Robot,” ICROS-SICE International Joint Conference, 2009.
    [19] J.-H. Han, S. Yang, and B.-U. Lee, “A Novel 3-D Color Histogram Equalization Method With Uniform 1-D Gray Scale Histogram,” IEEE Trans. on Image Process., vol. 20, no. 2, pp. 506–512, Feb. 2011.
    [20] X. Wu, L. Qiao, and J. Deng, “ A New Method for Bar Code Localization and Recognition,” 2009 2nd International Congress on Image and Signal Processing, Oct. 2009.
    [21] S. Khanmohammadi, G. Alizadeh, and M. Poormahmood, “Design of a Fuzzy Controller for Underwater Vehicles to Avoid Moving Obstacles,” 2007 IEEE International Fuzzy Systems Conference, Jun. 2007.
    [22] K. Fan, Q. Yang, P. Li, and W. Yan, “On the Design of AGV Obstacle Avoidance System Based on Fuzzy-PID Dual-Mode Controller,” 2012 IEEE Conference on Control, Systems & Industrial Informatics, Sep. 2012.

    無法下載圖示 全文公開日期 2021/10/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE