簡易檢索 / 詳目顯示

研究生: 洪維松
Wei-Song Hong
論文名稱: 聚丙烯型奈米改質聚醯胺摻混阻隔膜最適化阻氧性能研究
Investigation and optimization of the oxygen barrier properties of polypropylene compatible films of nano-modified polyamide blends
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 洪伯達
none
洪輝嵩
none
許應舉
none
張豐志
none
陳幹男
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 121
中文關鍵詞: 摻混聚丙烯型阻隔改質聚醯胺
外文關鍵詞: polypropylene compatible, blends, modified polyamide, barrier
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究首先探討聚丙烯型改質聚醯胺(MPAy)/奈米尼龍黏土(NYC)共混物(MPAyNYC)系列吹膜樣品阻隔氧氣性能,進而以最適化聚醯胺/奈米尼龍黏土共混物(MPAy12NYC1)摻混不同比例乙烯乙烯醇共聚物(EVOH),製備與探討MPAyNYC / EVOH共混物(MPAy12NYC1)xEVOHy系列吹膜樣品之最適化阻隔配方與機理。 相對於PE薄膜樣品,在25 ℃ / 65 %相對溼度下,MPAy及NYC薄膜樣品的氧氣滲透速率明顯慢了許多,其阻隔氧氣滲透速率已較PE薄膜改善約31.4及34.9倍;而EVOH薄膜樣品之阻隔氧氣滲透性質在所有基材塑膠中為最佳,其阻隔氧氣滲透性質已較PE薄膜改善 16133.3倍。而令人驚訝的是,在25 ℃ / 各相對溼度下,MPAyNYC系列薄膜樣品之氧氣滲透速率竟然均低於原先MPAy及NYC薄膜樣品之數值; 而且隨 MPAyNYC系列薄膜樣品內之MPAy與NYC達12:1之最適化比例時其氧氣滲透速率將至最低。另一方面, 添加過EVOH的(MPAy12NYC1)xEVOHy系列薄膜樣品在各相對濕度下的氧氣滲透速率基本上均小於原先對應於MPAy12NYC1薄膜樣品的氧氣滲透速率。 而且當其內MPAy12NYC1與EVOH的重量比達4:1時,其氧氣滲透速率達到最低。 比如,在65%相對濕度下,(MPAy12NYC1)4EVOH1薄膜樣品的氧氣滲透速率僅及7.7 (25μm • cm3 / m2 • day • atm)而已;相較於PE薄膜樣品其氧氣阻隔改善倍率已達約628倍。而相較於EVOH薄膜樣品,MPAyNYC 及(MPAy12NYC1)xEVOHy系列薄膜樣品之氧氣滲透速率雖隨其相對濕度增加而持續增加;但其增加之幅度明顯小於EVOH薄膜樣品。 為瞭解這些有趣之氧氣滲透阻隔性質,上述吹膜樣品之斷面型態、FT-IR、流變、廣角X光繞射、熱學性質、自由體積特性均在本文中被探討。


An investigation of the oxygen barrier properties of the modified polyamide and nylon clay (MPAyNYC) compound and blow the films is reported first, and blends with different percentage of EVOH in optimization conditions MPA12NYC1 to produce MPAyNYCEVOH barrier resins and blow the films, preparation and discussed the optimization of composition and mechanism of the (MPAy12NYC1)x EVOHy series films. Relative to PE membrane sample, at 25℃ / 65% relative humidity, the oxygen permeation rate was slowly obvious, and that is improved 31.4 and 34.9 times than PE specimen. EVOH specimen is the best result of whole matrix plastic of oxygen barrier properties, the oxygen barrier properties is improved 16133.3 times than PE specimen. An astonishing phenomenon, at 25℃ / every relative humidity, the oxygen permeation rate of MPAyNYC series films is lower than those MPAy and NYC membrane. Moreover, this improvement in oxygen permeation rate reach the best as the MPA contents present in MPAyNYC approach the 12:1 optimum weight ratio of MPA to NYC. On the other hand, the oxygen permeation rate of (MPAy12NYC1)xEVOHy specimen slower than those MPAy12NYC1 specimen, at every relative humidity. The oxygen permeation rate reach lowest as the weight ratio of MPAy12NYC1 to EVOH reached about 4:1. For instance, at 65% relative humidity, the oxygen permeation rate of (MPAy12NYC1)4EVOH1 is about 7.7 (25μm • cm3 / m2 • day • atm), which yield about 628 times oxygen barrier improvements better than that of the PE specimen. Relatively to EVOH specimen, although the oxygen permeation rate increase gradually as relative humidity increase that of the MPAyNYC and (MPAy12NYC1)x EVOHy series specimen, but the range of increased is to be smaller than EVOH specimen. To realize these interesting oxygen permeation barrier mechanisms, the morphology, FT-IR, rheological behavior, wide-angle X-ray diffraction patterns, thermal properties and characteristic of free volume have been every discussed in this paper.

目 錄 論文摘要 I ABSTRACT II 誌謝 ………….. ... Ш 目錄 ………………... ..IV 圖表索引 VI 一、前言 1 二、文獻回顧 7 2.1 高阻隔性塑膠材介紹………………………...……………………...7 2.2 泛用型高阻隔包裝材料.……….……………………….……………10 2.2.1聚醯胺樹酯 (Polyamide;PA)……………………………….13 2.2.2聚乙烯甲醛(Polyvinylindene Chloride;PVDC) …………..14 2.2.3聚乙烯醇 (Polyvinyl alcohol;PVA) ……………………….15 2.2.4乙烯-乙烯醇共聚物 (Ethylene/Vinyl alcohol;EVOH) .…..18 2.3 高分子摻合物中的氫鍵作用力………………………………….….27 2.4 氣體或溶劑蒸氣對高分子材料的滲透 ……………………………..33 2.4.1 氣體或溶劑蒸氣滲透分子特性對滲透性之影響…………34 2.4.2 高分子材料特性對滲透性的影響 36 2.4.3 添加劑對滲透性的影響 48 2.5 乙烯乙烯醇共聚物阻隔性材料之研究 50 2.6 尼龍奈米粘土共聚物阻隔性材料之研究 …………………..………52 2.7 改質聚醯胺/乙烯乙烯醇共聚物摻合物(Modified blend of polyamide and ethylene vinyl alcohol copolymer,MPAyEVOH)之 製備原理 56 2.8 改質聚醯胺/奈米尼龍共聚物摻合物(Modified blend of polyamide and nylon clay copolymer,MPAyNYC)之製備原理………………..59 三、實 驗…………………………………………………………………….61 3.1 原料 61 3.2 樣品製備 62 3.2.1 製備改質聚醯胺(MPAy)、聚醯胺奈米尼龍共聚物摻合物 ( MPAyNYC )及改質聚醯胺乙烯乙烯醇( MPAyEVOH )共 聚合物摻合物 62 3.2.2 製備改質聚醯胺/乙烯乙烯醇/奈米尼龍黏土共聚物 (MPAy/EVOH/NYC)薄膜樣品 64 3.3 斷面型態分析………………………………………………………….65 3.4 流變性質分析………………………………………………………….66 3.5 化學結構析.……………………………………………….……...……67 3.6 PP、MPAy、MPAy/EVOH/NYC之熱學性質分析及廣角X光繞 射分析(WAXD). 68 3.7 自由體積特性 ……………………………………..…………………..69 3.8 MPAy、MPAy/EVOH/NYC薄膜樣品之氣體滲透性質測試 71 四、結果與討論 72 4.1 Clay形態觀測析………………………………………………...…….72 4.2 FTIR紅外線光譜分…………………….………………….....……….76 4.3 流變性質…………………………………….…………………………85 4.4 熱學與寬角X光繞射性質.........………………………………………89 4.5 自由體積特性分析…………….………………………………………98 4.6 滲透性質測試 …………………………..………...….………………106 五、結 論 .113 參考文獻 117 作者簡介………………………………………….……………….……….121

1. Maack Business Services market report, U.S.A (2004).
2. CMAI completes 2003 World Nylon Fibers & Feedstocks Analysis, U.S.A (2003).
3. Mitsubishi Gas Chemical Company Announces Nylon-MXD6 Production Plan, Japan (2002).
4. W. E. Brown and Dekker, Plastics in Food Packaging, Chapter 1 (1992).
5. R. J. Crawford and B. W. Heinemann, Plastics Engineering, Chapter 1 (1998).
6. F. A. Long and L. J. Thompson, J. Polym. Sci., 14, 321 (1954).
7. M. K. White and Feller, J. Polym. Eng. Sci, 24, 1327 (1984).
8. J. S. Jang and D. K. Lee, J. Polym., 45 (2004).
9. T. OKAYA and K. IKARI, Polyvinyl Alcohol-Developments, C. A. Finch Ed, at Chapter 8, (1992).
10. 柯賢文,功能性包裝材料,第5章,第360頁 (2004)。
11. M. Muramatsu, M. Okura and K. Kuboyama et al., Radiation Physics and Chemistry, 68, 561 (2003).
12. Z. B. Zhang, I. J. Britt and M. A. Tung, J. Polym. Sci., 82, 1866 (2001).
13. J. B. Faisant, A. A. Kadi and M. Bousmina et al., Polymer, 39, 533 (1998).
14. G. W. Lohfink and, M. R. Kamal, J. Polym. Eng. Sci., 33, 404 (1993).
15. H. P. Grace, Chemical Engineering Communications, 14, 255 (1982).
16. M. R. Kamal, H. Garmabi and S. Hozhabr et al., J. Polym. Eng. Sci. (1995).
17. L. Pauling, The Nature of the Chemical Bond. Third Edition. Cornell University Press (1971).
18. M. M. Coleman, and J. Zarian, J. of Polym. Sci.: Polym. Phys. 17, 837(1979).
19. 汪輝雄,聚合體物性學,第12章,第243頁 (1980)。
20. V. Stannett, J. Membr. Sci., 3, 97 (1978).
21. R. M. Felder and G. S. Huvard, Methods of Experimental Physics, 16, Academic Press (1980).
22. J. Crank and G. S. Park, Diffusion in Polymers, Chapter 1, Academic Press (1968).
23. C. A. Kumins and T. K. Kwei, Diffusion in Polymers, Chapter 4, Academic Press (1968).
24. V. Stannett, W. J. Koros and D. R. Paul et al., Adv. Polym. Sci., 32, 69 (1977).
25. J. S. Vrentas and J. L. Duda, J. Polym. Sci., Polym Phys. Ed., 15, 403 (1977).
26. J. S. Vrentas and J. L. Duda, J. Polym. Sci., Polym Phys. Ed., 15, 417 (1977).
27. C. E. Rogers, M. Fels and N. N. Li, Rec. Devel. Sep. Sci., 2, 107 (1972).
28. V. Stannett, Diffusion in Polymers, Chapter 2, Academic Press (1968).
29. A. R. Berens and H. B. Hopfenberg, J. Membr. Sci., 10, 283 (1982).
30. W. R. Vieth, Diffusion in and through Polymers, 10 (1991).
31. K. Martin, The Kinetic Theory of Gases, 7 (1934).
32. Encyclopedia of Polymer Science and Technology, 2, 316 (1966).
33. S. Steingiser, S. P. Nemphos and M. Salame, Encyclopedia of Chemical Technology 3rd Ed., 3 (1978).
34. R. J. Ashily, Polymer Permeability, J. Comyn Ed., Chapter 7 (1988).
35. E. J. Mayor and K. Kammermeyer, Modern Plastics, 39, 136 (1962).
36. J. A. Brydson, Plastics Materials, Iliffe Ed., Chapter 5 (1966).
37. I. Auerbach, W. R. Miller and W. C. Kuryla et al., J. Polym. Sci., 28, 129 (1958).
38. T. OKAYA and K. IKARI, Polyvinyl Alcohol-Developments, C.A.Finch Ed, Chapter 8 (1992).
39. A. Aitken and R. M. Barrer, Trans. Faraday Soc., 51, 116 (1955).
40. M. Salamone, Encyclopedia of Packaging Technology, M. Baker, Ed., 48 (1986).
41. A. S. Michaels and R. B. Parker, J. Polym. Sci., 53 (1953).
42. A. S. Michaels and H. J. Bixler, J. Polym. Sci., 393 (1961).
43. A. S. Michaels and H. J. Bixler, J. Polym. Sci., 413 (1961).
44. L. H. Wang and R. S. Porter, J. Polym. Sci., Polym. Phys. Ed., 22, 1645 (1984).
45. D. H. Weinkauf and D. R. Paul, Barrier Polymer and Structures, W. J. Koros Ed., Chapter 3, American Chemical Society (1990).
46. C. E. Rogers, Engineering Design for Plastics, E. Baer, Ed., (1964).
47. R. M. Barrer and G. Skirrow, J. Polym. Sci., 3, 549 (1948).
48. G. C. Pimentel, A. L. McClellan, The Hydrogen Bond (1960).
49. O. Olabist, L. M. Robeson and M. T. Shaw, Polymer-Polymer Miscibility, Academic Press (1979).
50. E. P. Socci, M. K. Akkapeddi and D.C. Worley, ANTEC, 1721 (2001).
51. D. R. Holmes, C. W. Bunn and D. J. Smith, J. Polym. Sci, 17, 159 (1955).
52. E. P. Giannelis, Adv. Mater., 8, 29 (1996).
53. J. Ren and A. S. Silva, Macromolecules, 33, 3739 (2000).
54. L. E. Neilsen, Macromlo. J. Sci., Chem. A1, 929 (1967).
55. S. bonner, B. Sabandith and W.Zhou, ANTEC, 292 (2001).
56. A. Unitika, J. Mater. Res., 8, 1179 (1993).
57. E. P. Socci, M. K. Akkapeddi and D. C. Worley, ANTEC, 1721 (2001).
58. R. Krishnamooriti, Macromolecules, 30, 4097 (1997).
59. M. Alexandre, P. Dubois, Materials Science and Engineer, 1, 28 (2000).
60. J. Ren, and A. S. Silva, Macromolecules, 33, 3739 (2000).
61. K. Yasue, S. Katahira, and M. Yoshikawa, Polymer-clay nanocomposites, 111 (2000).
62. H. Nakanishi, S. J. Wang, and Y. C. Jean, in Positron Annihilation in Fluids, S. C. Sharma, Ed., World Scientific, Singapore, 753(1988).
63. Q. Deng, C. S. Sundar, Y. C. Jean, J. Phys. Chem., 96, 492(1992).
64. Y. Y. Wang, H. Nakanishi, Y. C. Jean, T. C. Sandreczki, J. Polym Sci Polym. Phys. Ed., 28, 1431 (1990).
65. H. W. Siesler, K. H. Moritz, Infrared and Raman Spectroscopy of Polymers, (1980).
66. D. R. Holmes, C. W. Bunn, and D. J. Smith, J. Polym. Sci., XVⅡ, 159, (1955).
67. M. Kyotani, and S. Mitsuhashi, J. Polym. Sci., Part A-2, 10, 1497, (1972).
68. J. M. Lagaron, E. Gimenez and J. J. Saura et al., Polymer, 42, 7381, (2001).
69. M. L. Cerrada, E. Petez and J. M. Perena et al., Macromolecules, 31, 2559, (1998).
70. D. R. Holmes, C. W. Bunn and D. J. Smith, J. Polym. Sci, 17, 159 (1955).
71. S. C. Kim and S. Y. Lee, J. Appl. Polym. Sci., 68, 1245 (1998).
72. T. M. Wu, E. C. Chen, Polym. Eng. Sci., 42, 1141 (2002).
73. T. D. Fornes, D. R. Paul, Polymer, 44, 3945 (2003).
74. J. M. Lagaron, E. Gimenez and J. J. Saura et al., Polymer, 42, 7381 (2001).
75. P. Ernesto, M. L. Cerrada and D. L. Vanderhart, J. Polym. Sci. Part B: Polymer Physics, 36, 2103 (1998).
76. M. L. Cerrada, J. M. Perena and R. Benavente et al., Polymer, 41, 6655 (2000).
77. M. L. Cerrada, R. Benavente and E. Perez et al., Polymer Journal, 32, 999 (2000).
78. I. Sakurada, Polyvinyl Alcohol Fibers, (1985).
79. H. E. Assender and A. H. Windle, Polymer, 39, 4295 (1998).
80. J. E. Mark, Physical Properties of Polymers Handbook, 409 (1996).

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE