簡易檢索 / 詳目顯示

研究生: 許栢瑞
Po-Jui Hsu
論文名稱: 利用真空濺鍍及微波電漿系統製備用於重金屬檢測之鉍錫雙金屬薄膜電極
Fabrication of Bi-Sn bimetal film electrode via sputtering and microwave plasma system for heavy metal detection
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 魏大欽
Ta-Chin Wei
徐振哲
Cheng-Che Hsu
陳建彰
Jian-Zhang Chen
葉旻鑫
Min-Hsin Yeh
林文賓
Wen-Pin Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 191
中文關鍵詞: 微波電漿真空濺鍍錫薄膜電極鉍錫薄膜電極鎘離子重金屬感測
外文關鍵詞: Microwave plasma, Sputtering, Tin film electrode, Bismuth-tin film electrode, Cadmium, Heavy metal detection
相關次數: 點閱:379下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

重金屬汙染會影響人體的生理機能,人體經由直接或是間接地攝入重金屬會引起臟器骨骼病變,皮膚、黏膜及呼吸道的局部炎症,以及中樞神經等不可逆之永久性損傷。因此,建立有效且準確監測食物及水源中殘留的重金屬離子的方式尤為重要。傳統的感測方式例如感應式耦合電漿光學放射光譜儀 (Inductively coupled plasma optical emission spectroscopy, ICP-OES) 及感應式耦合電漿質譜儀 (Inductively coupled plasma mass spectroscopy, ICP-MS) 已能準確探測樣品之重金屬含量,但是儀器的複雜操作,龐大的機械設備,以及對於樣品和標準品校正的要求過於嚴苛,使感測的廣泛性被侷限。因此,眾多研究團隊致力於發展輕便化、可攜帶式、高靈敏性的重金屬檢測感測系統。
方波陽極剝除法 (square wave anodic stripping voltammetry, SWASV) 及薄膜電極 (film electrode, FE) 是一種以伏安法之電流響應定量重金屬離子的方式。工作電極的表面原子會與重金屬離子形成類汞齊的薄膜,沉積於電極表面,而後經由正向掃描將沉積的重金屬氧化,即可由伏安圖中的金屬氧化峰進行定量。工作電極之化學結構及表面型態,是影響重金屬離子沉積的關鍵,因此不同的元素例如汞、鉍、鎵、銦、錫、鉛等後過渡金屬被用作工作電極,以因應不同的目標重金屬離子。研究顯示單一元素態的工作電極對於重金屬離子的親和力、普遍性、及最低偵測極限有所侷限,因此同時使用兩種金屬作為工作電極,以協同效應可增強對於重金屬離子之靈敏度及最低偵測極限。
過往文獻中以錫金屬作為工作電極的研究極為稀少,因此本論文第一部分先行探討錫電極之電化學性質、鈍化性質、以及最適化錫電極偵測鎘離子之電化學勢窗和酸鹼值。第二部分以微波電漿蝕刻錫電極表面,以達到去除氧化層及活化表面之效果。第三部分以濺鍍鉍的方式,形成鉍錫雙金屬薄膜電極,並調控濺鍍時間,以最適化鉍錫金屬的比例。第四部份以微波電漿處理最適化之鉍錫雙金屬薄膜電極,嘗試疊加兩種後處理帶來的效果,以更精進對鎘離子之靈敏度及最低偵測極限。
結果顯示微波電漿處理能放大稀薄濃度時的波形,且能極大的增強對鎘離子之靈敏度;而鉍濺鍍則能有效穩定電流響應及降低背景值,使鉍錫雙金屬電極的準確性大幅提升。最適化後以微波電漿處理之鉍錫雙金屬薄膜電極對鎘離子偵測之線性區間為5 ppb ~ 100 ppb,靈敏度為 2.46 μA/ppb,偵測極限可達0.45 ppb,偵測表現可匹敵現有的文獻數值。


Recent scientific studies have revealed that heavy metal contamination can significantly impact human physiological functions. Heavy metal consumption, whether direct or indirect, can cause local inflammation of the skin, mucous membranes, respiratory tract, visceral bone lesions, irreversible and permanent central nervous system damage. As a result, it is critical to develop methods for effectively and precisely monitoring residual heavy metal ions in food and water sources. Conventional sensing technologies, such as inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectroscopy (ICP-MS), have shown their capability in detecting heavy metal ions accurately. However, the sophisticated operation, massive mechanical equipment, and stringent requirements for samples and calibrations limited the versatility of heavy metal detection. Therefore, many research teams are committed to developing lightweight, portable, high-sensitivity heavy metal detection systems.
Heavy metal ions can be measured by voltammetric current response using square wave anodic stripping voltammetry (SWASV) with the thin film electrode (FE). The surface atoms of the working electrode will form an amalgam-like thin film with the heavy metal ions and coat on the electrode surface, which can be quantified from the oxidation peaks in the voltammogram through the forward scan. The chemical composition and surface construction of the working electrode are essential determinants in heavy metal ions deposition. As a result, various elements such as mercury, bismuth, gallium, indium, tin, lead, and other post-transitional metals are utilized as the working electrode material to bind with specific target heavy metal ions. Research has revealed that the affinity, ubiquity, and limit of detection for heavy metal ions were constrained by applying single-element working electrodes. Therefore, combining two metals as working electrodes simultaneously can improve the sensitivity and limit of detection through the synergetic effect.
Due to the limited research utilizing tin metal as the working electrode in previous studies, the first section of this thesis covers the electrochemical properties, passivation properties, electrochemical potential window, and optimized pH value of tin electrode for cadmium detection. The second section applies the microwave plasma to remove the inherent oxide layer and activate the electrode surface. In the third section, bismuth is sputtered on the tin electrodes to establish bismuth-tin bimetallic film electrodes. The ratio of bismuth to tin metal is optimized by manipulating the sputtering time. In the last section, microwave plasma treatment is applied on the optimized bismuth-tin bimetallic film electrode in an effort to superimpose the benefits of the two post-treatments to raise the sensitivity and the limit of detection to cadmium ions.
The results revealed that microwave plasma treatment can significantly increase the sensitivity to cadmium ions and may amplify the response at a dilute concentration. On the other hand, bismuth sputtering can effectively stabilize the current response and lower the background noise, resulting in high accuracy for the bismuth-tin bimetallic electrode. The best-performed microwave plasma-treated bismuth-tin bimetallic film electrode exhibited linearity between 5 ppb to 100 ppb, a sensitivity of 2.46 μA/ppb, and a limit of detection of 0.45 ppb, competitive to the reported records.

摘要 I Abstract III Contents V List of Figures VIII List of Tables XXII Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Methods for heavy metal detection 3 2.2 The modification of the working electrode 5 2.3 Plasma modification 9 2.4 Bismuth film electrode (BiFE) 14 2.5 Tin-film electrode (SnFE) 19 2.6 Bismuth-tin film electrode (BiSnFE) 25 Chapter 3 Experimental 31 3.1 Chemicals, reagents, and instruments 31 3.1.1 Chemicals and reagents 31 3.1.2 Experiment apparatus 32 3.1.2.1 Microwave plasma system 32 3.1.2.2 Sputtering system 33 3.2 Experimental procedure 33 3.2.1 Preparation of the Sn electrode 33 3.2.2 Microwave plasma treatment 34 3.2.3 Bi sputtering process 36 3.2.4 Electrochemical analysis 38 3.2.4.1 Cyclic voltammetry (CV) 38 3.2.4.2 Square wave anodic stripping voltammetry (SWASV) 40 3.2.4.3 Randles-Sevcik equation 41 3.2.4.4 Limit of detection (LOD) 42 3.2.4.5 Limit of quantitation (LOQ) 43 3.3 Principles and methods of analytical instruments 44 3.3.1 Water contact angle (WCA) 44 3.3.2 Scanning Electron Microscope (SEM) 45 3.3.3 X-ray Diffraction (XRD) 46 3.3.4 Atomic Force Microscope (AFM) 48 3.3.5 Four-point Probe Measurement 49 3.3.6 Electron Spectroscopy for Chemical Analysis (ESCA) 51 Chapter 4 Results and Discussion 53 4.1 Electrochemical characteristics of the Sn electrode 53 4.1.1 CV analyses of Sn electrode in ferricyanide/ferrocyanide system 53 4.1.2 The passive characteristics of the Sn electrode 54 4.1.3 The CV analysis by applying Zn (II) as the electroactive species 55 4.1.4 Effects of pH value on electrochemical responses of Sn electrode 56 4.1.5 Effects of pH value to the SWASV diagram of Sn electrode 57 4.1.6 Optimization of the sensing condition for Cd (II) 58 4.2 The Ar microwave plasma (ArMP) treatment on Sn electrode 60 4.2.1 Effects of ArMP treatment time on surface wettability of Sn electrodes 60 4.2.2 The surface morphology and the chemical composition of the ArMP/Sn 61 4.2.3 The XRD patterns of ArMP/Sn under different treatment time 62 4.2.4 The topographic features of ArMP/Sn under different treatment time 63 4.2.5 Effects of ArMP treatment time on electrical properties of Sn electrodes 63 4.2.6 The SWASV analyses of ArMP/Sn for Cd (II) detection 64 4.3 The fabrication of bimetal BiSnFE by sputtering process 66 4.3.1 Estimation of Bi sputtering rate 66 4.3.2 The surface morphology and the chemical composition of Bisp under different deposition time 67 4.3.3 The surface wettability of Bisp under different deposition time 68 4.3.4 The X-ray diffraction patterns of Bisp under different deposition time 69 4.3.5 The blank SWASV analysis of Bisp/Sn under different deposition time 70 4.3.6 The SWASV analysis of Bisp/Sn for Cd (II) detection 72 4.3.7 The ESCA analysis of Bisp/Sn under different deposition time 74 4.3.8 The Bisp/Sn electrodes applied in the real simple test 76 4.4 Argon microwave plasma treatment on Bi sputtered Sn electrode 78 4.4.1 Effects of ArMP treatment time on the surface morphology and the chemical composition of the ArMP_Bisp/Sn 78 4.4.2 The X-ray diffraction patterns of ArMP_10min_Bisp/Si under different ArMP treatment time 79 4.4.3 Topographic features of ArMP_10min_Bisp/Sn under different ArMP treatment time 80 4.4.4 Effects of plasma treatment time on electrical properties of ArMP_10min_Bisp/Sn 81 4.4.5 The ESCA analysis of ArMP_10min_Bisp/Sn 82 4.4.6 The SWASV analysis of ArMP_10min_Bisp/Sn for Cd (II) detection 83 Chapter 5 Conclusions 137 Future Work 139 Reference 152

1. Masindi, V. and K.L. Muedi, Environmental contamination by heavy metals, in Heavy metals. 2018: London, UK. p. 115-132.
2. Li, J., S. Guo, Y. Zhai, and E. Wang, Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochemistry Communications, 2009. 11(5): p. 1085-1088.
3. Weiss, D.J., M. Rehkdmper, R. Schoenberg, M. McLaughlin, J. Kirby, P.G. Campbell, T. Arnold, J. Chapman, K. Peel, Gioia, and Simone, Application of nontraditional stable-isotope systems to the study of sources and fate of metals in the environment. 2008, ACS Publications.
4. Zheng, J., M.A. Rahim, J. Tang, F.M. Allioux, and K. Kalantar‐Zadeh, Post‐Transition Metal Electrodes for Sensing Heavy Metal Ions by Stripping Voltammetry. Advanced Materials Technologies, 2022. 7(1): p. 2100760.
5. Wang, J., J. Lu, S.B. Hocevar, P.A. Farias, and B. Ogorevc, Bismuth-coated carbon electrodes for anodic stripping voltammetry. Analytical Chemistry, 2000. 72(14): p. 3218-3222.
6. Batool, M., M.F. Nazar, A. Awan, M.B. Tahir, A. Rahdar, A.E. Shalan, S. Lanceros-Méndez, and M.N. Zafar, Bismuth-based heterojunction nanocomposites for photocatalysis and heavy metal detection applications. Nano-Structures & Nano-Objects, 2021. 27: p. 100762.
7. White, G. and S.B. Woods, The thermal and electrical resistivity of bismuth and antimony at low temperatures. Philosophical Magazine, 1958. 3(28): p. 342-359.
8. Palomo-Marín, M., F. Rueda-Holgado, J. Marín-Expósito, and E. Pinilla-Gil, Disposable sputtered-bismuth screen-printed sensors for voltammetric monitoring of cadmium and lead in atmospheric particulate matter samples. Talanta, 2017. 175: p. 313-317.
9. Ouyang, R., W. Zhang, S. Zhou, Z.-L. Xue, L. Xu, Y. Gu, and Y. Miao, Improved Bi film wrapped single walled carbon nanotubes for ultrasensitive electrochemical detection of trace Cr (VI). Electrochimica Acta, 2013. 113: p. 686-693.
10. Czop, E., A. Economou, and A. Bobrowski, A study of in situ plated tin-film electrodes for the determination of trace metals by means of square-wave anodic stripping voltammetry. Electrochimica Acta, 2011. 56(5): p. 2206-2212.
11. Alves, G.M., L.S. Rocha, and H.M. Soares, Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review. Talanta, 2017. 175: p. 53-68.
12. Finšgar, M., B. Petovar, and K. Vodopivec, Bismuth-tin-film electrodes for Zn (II), Cd (II), and Pb (II) trace analysis. Microchemical Journal, 2019. 145: p. 676-685.
13. Xiong, C.H., H.Q. Luo, and N.B. Li, A stannum/bismuth/poly (p-aminobenzene sulfonic acid) film electrode for measurement of Cd (II) using square wave anodic stripping voltammetry. Journal of Electroanalytical Chemistry, 2011. 651(1): p. 19-23.
14. Ouyang, B., Y. Zhang, X. Xia, R. Rawat, and H. Fan, A brief review on plasma for synthesis and processing of electrode materials. Materials Today Nano, 2018. 3: p. 28-47.
15. Tian, Y., Z. Wei, X. Wang, S. Peng, X. Zhang, and W.-m. Liu, Plasma-etched, S-doped graphene for effective hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017. 42(7): p. 4184-4192.
16. Xu, L., Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, and L. Dai, Plasma‐engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angewandte Chemie, 2016. 128(17): p. 5363-5367.
17. Malik, L.A., A. Bashir, A. Qureashi, and A.H. Pandith, Detection and removal of heavy metal ions: a review. Environmental Chemistry Letters, 2019. 17(4): p. 1495-1521.
18. Olesik, J.W., Elemental analysis using icp-oes and icp/ms. Analytical Chemistry, 1991. 63(1): p. 12A-21A.
19. Tyler, G. and S. Jobin Yvon, ICP-OES, ICP-MS and AAS Techniques Compared. ICP Optical Emission Spectroscopy Technical Note, 1995. 5.
20. Mays, D.E. and A. Hussam, Voltammetric methods for determination and speciation of inorganic arsenic in the environment—a review. Analytica Chimica Acta, 2009. 646(1-2): p. 6-16.
21. Sawan, S., R. Maalouf, A. Errachid, and N. Jaffrezic-Renault, Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review. TrAC Trends in Analytical Chemistry, 2020. 131: p. 116014.
22. Hou, H., K.M. Zeinu, S. Gao, B. Liu, J. Yang, and J. Hu, Recent advances and perspective on design and synthesis of electrode materials for electrochemical sensing of heavy metals. Energy & Environmental Materials, 2018. 1(3): p. 113-131.
23. Gao, C., Z. Dong, X. Hao, Y. Yao, and S. Guo, Preparation of reduced graphene oxide aerogel and its adsorption for Pb (II). ACS Omega, 2020. 5(17): p. 9903-9911.
24. Zhao, G., Y. Yin, H. Wang, G. Liu, and Z. Wang, Sensitive stripping voltammetric determination of Cd (II) and Pb (II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode. Electrochimica Acta, 2016. 220: p. 267-275.
25. Priya, T., N. Dhanalakshmi, S. Thennarasu, V. Karthikeyan, and N. Thinakaran, Ultra sensitive electrochemical detection of Cd2+ and Pb2+ using penetrable nature of graphene/gold nanoparticles/modified L-cysteine nanocomposite. Chemical Physics Letters, 2019. 731: p. 136621.
26. Akanji, S.P., O.M. Ama, S.S. Ray, and P.O. Osifo, Metal oxide nanomaterials for electrochemical detection of heavy metals in water, in Nanostructured Metal-Oxide Electrode Materials for Water Purification, S.S.R. Onoyivwe Monday Ama, Editor. 2020, Springer Cham. p. 65-100.
27. Jin, Z., M. Yang, S.-H. Chen, J.-H. Liu, Q.-X. Li, and X.-J. Huang, Tin oxide crystals exposed by low-energy {110} facets for enhanced electrochemical heavy metal ions sensing: X-ray absorption fine structure experimental combined with density-functional theory evidence. Analytical Chemistry, 2017. 89(4): p. 2613-2621.
28. Ouyang, B., Y. Zhang, X. Xia, R.S. Rawat, and H.J. Fan, A brief review on plasma for synthesis and processing of electrode materials. Materials Today Nano, 2018. 3: p. 28-47.
29. Yoshida, S., K. Hagiwara, T. Hasebe, and A. Hotta, Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surface and Coatings Technology, 2013. 233: p. 99-107.
30. Reynamartínez, R., R.N. Céspedes, M.I. Alonso, and Y.R. Acosta, Use of cold plasma technology in biomaterials and their potential utilization in controlled administration of active substances. Journal Material Science, 2018. 4(5): p. 555649.
31. Hofmann, S., C. Ducati, J. Robertson, and B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2003. 83(1): p. 135-137.
32. Jafri, R.I., N. Rajalakshmi, and S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. Journal of Materials Chemistry, 2010. 20(34): p. 7114-7117.
33. Ye, G., Y. Gong, J. Lin, B. Li, Y. He, S.T. Pantelides, W. Zhou, R. Vajtai, and P.M. Ajayan, Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Letters, 2016. 16(2): p. 1097-1103.
34. Widdascheck, F., M. Kothe, A.A. Hauke, and G. Witte, The effect of oxygen plasma treatment of gold electrodes on the molecular orientation of CuPc films. Applied Surface Science, 2020. 507: p. 145039.
35. Cvelbar, U., Z. Chen, M.K. Sunkara, and M. Mozetič, Spontaneous growth of superstructure α‐Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small, 2008. 4(10): p. 1610-1614.
36. Huang, R., T. Lan, C. Li, and Z. Wang, Plasma-activated direct bonding at room temperature to achieve the integration of single-crystalline GaAs and Si substrate. Results in Physics, 2021. 31: p. 105070.
37. Luque-Agudo, V., M. Hierro-Oliva, A.M. Gallardo-Moreno, and M.L. González-Martín, Effect of plasma treatment on the surface properties of polylactic acid films. Polymer Testing, 2021. 96: p. 107097.
38. Liu, Z., Z. Zhao, Y. Wang, S. Dou, D. Yan, D. Liu, Z. Xia, and S. Wang, In situ exfoliated, edge‐rich, oxygen‐functionalized graphene from carbon fibers for oxygen electrocatalysis. Advanced Materials, 2017. 29(18): p. 1606207.
39. Komasa, S., T. Kusumoto, R. Hayashi, S. Takao, M. Li, S. Yan, Y. Zeng, Y. Yang, H. Hu, and Y. Kobayashi, Effect of argon-based atmospheric pressure plasma treatment on hard tissue formation on titanium surface. International Journal of Molecular Sciences, 2021. 22(14): p. 7617.
40. Xiao, Z., Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L. Tao, and Z. Shu, Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. Journal of the American Chemical Society, 2020. 142(28): p. 12087-12095.
41. Hocevar, S.B., J. Wang, R.P. Deo, and B. Ogorevc, Potentiometric stripping analysis at bismuth‐film electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2002. 14(2): p. 112-115.
42. Wang, J., J. Lu, S.B. Hocevar, and B. Ogorevc, Bismuth‐coated screen‐printed electrodes for stripping voltammetric measurements of trace lead. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2001. 13(1): p. 13-16.
43. Wang, J. and J. Lu, Bismuth film electrodes for adsorptive stripping voltammetry of trace nickel. Electrochemistry Communications, 2000. 2(6): p. 390-393.
44. Wang, J., Stripping analysis at bismuth electrodes: a review. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2005. 17(15‐16): p. 1341-1346.
45. Economou, A., Bismuth-film electrodes: recent developments and potentialities for electroanalysis. TrAC Trends in Analytical Chemistry, 2005. 24(4): p. 334-340.
46. Lezi, N., A. Economou, P.A. Dimovasilis, P.N. Trikalitis, and M.I. Prodromidis, Disposable screen-printed sensors modified with bismuth precursor compounds for the rapid voltammetric screening of trace Pb (II) and Cd (II). Analytica Chimica Acta, 2012. 728: p. 1-8.
47. Ongaro, M. and P. Ugo, Sensor arrays: arrays of micro-and nanoelectrodes, in Environmental analysis by electrochemical sensors and biosensors, K.K. Ligia Maria Moretto, Editor. 2014, Springer: New York. p. 410-412.
48. Hutton, E.A., S.B. Hočevar, and B. Ogorevc, Ex situ preparation of bismuth film microelectrode for use in electrochemical stripping microanalysis. Analytica Chimica Acta, 2005. 537(1-2): p. 285-292.
49. Armstrong, K.C., C.E. Tatum, R.N. Dansby-Sparks, J.Q. Chambers, and Z.-L. Xue, Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. Talanta, 2010. 82(2): p. 675-680.
50. Sosa, V., N. Serrano, C. Arino, J.M. Díaz‐Cruz, and M. Esteban, Voltammetric Determination of Pb (II) and Cd (II) Ions in Well Water Using a Sputtered Bismuth Screen‐Printed Electrode. Electroanalysis, 2014. 26(10): p. 2168-2172.
51. Sosa, V., N. Serrano, C. Ariño, J.M. Díaz-Cruz, and M. Esteban, Sputtered bismuth screen-printed electrode: a promising alternative to other bismuth modifications in the voltammetric determination of Cd (II) and Pb (II) ions in groundwater. Talanta, 2014. 119: p. 348-352.
52. Riman, D., D. Jirovsky, J. Hrbac, and M.I. Prodromidis, Green and facile electrode modification by spark discharge: Bismuth oxide-screen printed electrodes for the screening of ultra-trace Cd (II) and Pb (II). Electrochemistry Communications, 2015. 50: p. 20-23.
53. Zhu, W.W., N.B. Li, and H.Q. Luo, Simultaneous determination of chromium (III) and cadmium (II) by differential pulse anodic stripping voltammetry on a stannum film electrode. Talanta, 2007. 72(5): p. 1733-1737.
54. Cubadda, F. and A. Raggi, Determination of cadmium, lead, iron, nickel and chromium in selected food matrices by plasma spectrometric techniques. Microchemical Journal, 2005. 79(1-2): p. 91-96.
55. Locatelli, C., Analytical procedure for the simultaneous voltammetric determination of toxic metals in dialysis fluids. Analytical and Bioanalytical Chemistry, 2003. 376(4): p. 518-523.
56. Locatelli, C., Voltammetric methods for the simultaneous determination of trace metals in foods, plant tissues and soils. Journal of the Science of Food and Agriculture, 2007. 87(2): p. 305-312.
57. Li, B.L., Z.L. Wu, C.H. Xiong, H.Q. Luo, and N.B. Li, Anodic stripping voltammetric measurement of trace cadmium at tin-coated carbon paste electrode. Talanta, 2012. 88: p. 707-710.
58. Wang, J., C. Bian, J. Tong, J. Sun, and S. Xia, Simultaneous detection of copper, lead and zinc on tin film/gold nanoparticles/gold microelectrode by square wave stripping voltammetry. Electroanalysis, 2012. 24(8): p. 1783-1790.
59. Kokkinos, C., A. Economou, and T. Speliotis, Tin-film mini-sensors fabricated by a thin-layer microelectronic approach for stripping voltammetric determination of trace metals. Electrochemistry Communications, 2014. 38: p. 96-99.
60. Kokkinos, C. and A. Economou, Tin film sensor with on-chip three-electrode configuration for voltammetric determination of trace Tl (I) in strong acidic media. Talanta, 2014. 125: p. 215-220.
61. Kokkinos, C., A. Economou, and D. Giokas, based device with a sputtered tin-film electrode for the voltammetric determination of Cd (II) and Zn (II). Sensors and Actuators B: Chemical, 2018. 260: p. 223-226.
62. Trachioti, M.G., J. Hrbac, and M.I. Prodromidis, Determination of Cd and Zn with “green” screen-printed electrodes modified with instantly prepared sparked tin nanoparticles. Sensors and Actuators B: Chemical, 2018. 260: p. 1076-1083.
63. Kefala, G., A. Economou, and A. Voulgaropoulos, A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst, 2004. 129(11): p. 1082-1090.
64. Kokkinos, C. and A. Economou, Disposable Nafion-modified micro-fabricated bismuth-film sensors for voltammetric stripping analysis of trace metals in the presence of surfactants. Talanta, 2011. 84(3): p. 696-701.
65. Yi, W.J., Y. Li, G. Ran, H.Q. Luo, and N.B. Li, Determination of cadmium (II) by square wave anodic stripping voltammetry using bismuth–antimony film electrode. Sensors and Actuators B: Chemical, 2012. 166: p. 544-548.
66. Foster, C.W., A.P. de Souza, J.P. Metters, M. Bertotti, and C.E. Banks, Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes. Analyst, 2015. 140(22): p. 7598-7612.
67. Finšgar, M. and L. Kovačec, Copper-bismuth-film in situ electrodes for heavy metal detection. Microchemical Journal, 2020. 154: p. 104635.
68. Li, N.B., W.W. Zhu, J.H. Luo, and H.Q. Luo, A stannum–bismuth composite film electrode for simultaneous determination of zinc (II) and cadmium (II) using differential pulse anodic stripping voltammetry. Analyst, 2012. 137(3): p. 614-617.
69. Pan, D., L. Zhang, J. Zhuang, W. Lu, R. Zhu, and W. Qin, New application of tin–bismuth alloy for electrochemical determination of cadmium. Materials Letters, 2012. 68: p. 472-474.
70. Zhang, D. and Q. Xiang, Electrophoretic assembly of Sn-Bi film for the voltammetric determination of Cd (II) and Pb (II). Microchemical Journal, 2021. 166: p. 106265.
71. Gude, V.G., P. Patil, and S. Deng. Microwave energy potential for large scale biodiesel production. in World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conference. 2012.
72. Tiwari, S., A. Caiola, X. Bai, A. Lalsare, and J. Hu, Microwave plasma-enhanced and microwave heated chemical reactions. Plasma Chemistry and Plasma Processing, 2020. 40(1): p. 1-23.
73. Sun, H., J. Lee, H. Do, S.-k. Im, and M. Soo Bak, Experimental and numerical studies on carbon dioxide decomposition in atmospheric electrodeless microwave plasmas. Journal of Applied Physics, 2017. 122(3): p. 033303.
74. Horikoshi, S. and N. Serpone, RF Power Semiconductor Generator Application in Heating and Energy Utilization. 2020, Springer: Singapore. p. 181-194.
75. Chapman, B. and J. Vossen, Glow discharge processes: sputtering and plasma etching. Physics Today, 1981. 34(7): p. 62.
76. Das, G., B. Singha, and J. Chutia, Characteristic behavior of the sheath formation in thermal plasma. Physics of Plasmas, 1999. 6(9): p. 3685-3689.
77. Furlanetto, S.R. and S.J. Stoever, Secondary ionization and heating by fast electrons. Monthly Notices of the Royal Astronomical Society, 2010. 404(4): p. 1869-1878.
78. Horikoshi, S. and N. Serpone, RF Power Semiconductor Generator Application in Heating and Energy Utilization. 2020: Springer Nature.
79. Bard, A.J. and L.R. Faulkner, Student Solutions Manual to accompany Electrochemical Methods: Fundamentals and Applicaitons, 2e. 2002: John Wiley & Sons.
80. Wang, J., Stripping-based electrochemical metal sensors for environmental monitoring. Comprehensive Analytical Chemistry, 2007. 49: p. 131-141.
81. Elgrishi, N., K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, and J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 2018. 95(2): p. 197-206.
82. Armbruster, D.A. and T. Pry, Limit of blank, limit of detection and limit of quantitation. The Clinical Biochemist Reviews, 2008. 29(Suppl 1): p. S49.
83. Shrivastava, A. and V.B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2011. 2(1): p. 21-25.
84. Food and D. Administration, Draft Guidance for Industry on Analytical Procedures and Methods Validation: Chemistry, Manufacturing, and Controls Documentation; Availability. Fed. Regist, 2000. 65(169): p. 52776-52777.
85. Huhtamäki, T., X. Tian, J.T. Korhonen, and R.H. Ras, Surface-wetting characterization using contact-angle measurements. Nature Protocols, 2018. 13(7): p. 1521-1538.
86. Marturi, N., Vision and visual servoing for nanomanipulation and nanocharacterization in scanning electron microscope. 2013, Université de Franche-Comté.
87. Vernon-Parry, K., Scanning electron microscopy: an introduction. III-Vs Review, 2000. 13(4): p. 40-44.
88. Zhou, W., R. Apkarian, Z.L. Wang, and D. Joy, Fundamentals of scanning electron microscopy (SEM), in Scanning Microscopy for Nanotechnology. 2006, Springer. p. 1-40.
89. Sima, F., n. Ristoscu, L. Duta, O. Gallet, K. Anselme, and I. Mihailescu, Laser thin films deposition and characterization for biomedical applications, in Laser surface modification of biomaterials, R. Vilar, Editor. 2016, Woodhead Publishing. p. 77-125.
90. Abrosimova, G., A. Aronin, and A. Budchenko, Amorphous phase decomposition in Al–Ni–RE system alloys. Materials Letters, 2015. 139: p. 194-196.
91. West, A.R. and J.W. Sons, Solid state chemistry and its applications. 2014, Hoboken, NJ Wiley: United Kingdom. p. 239-244.
92. Liu, S. and Y. Wang, Application of AFM in microbiology: a review. Scanning, 2010. 32(2): p. 61-73.
93. Lee, W., H. Lee, G. Lee, and D.S. Yoon, Advances in AFM imaging applications for characterizing the biophysical properties of amyloid fibrils. Exploring new findings on amyloidosis, 2016.
94. Miccoli, I., F. Edler, H. Pfnür, and C. Tegenkamp, The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics: Condensed Matter, 2015. 27(22): p. 223201.
95. Wang, C.-W., K. Cook, and A. Sastry, Conduction in multiphase particulate/fibrous networks: Simulations and experiments on Li-ion anodes. Journal of the Electrochemical Society, 2003. 150(3): p. A385.
96. Chastain, J. and R.C. King Jr, Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, 1992. 40: p. 221.
97. Venezia, A.M., X-ray photoelectron spectroscopy (XPS) for catalysts characterization. Catalysis Today, 2003. 77(4): p. 359-370.
98. Cushman, C., S. Chatterjee, G.H. Major, N. Smith, A. Roberts, and M. Linford, Trends in advanced XPS instrumentation. 1. overview of the technique, automation, high sensitivity, imaging, snapshot spectroscopy, gas cluster ion beams, and multiple analytical techniques on the instrument. Vacuum Technology & Coating, 2016. 11.
99. Worley, B.C., W.A. Ricks, M.P. Prendergast, B.W. Gregory, R. Collins, J.J. Cassimus Jr, and R.G. Thompson, Anodic passivation of tin by alkanethiol self-assembled monolayers examined by cyclic voltammetry and coulometry. Langmuir, 2013. 29(42): p. 12969-12981.
100. Ammar, I., S. Darwish, M. Khalil, and S. El-Taher, A review on the electrochemistry of tin. Materials Chemistry and Physics, 1989. 21(1): p. 1-47.
101. Al-Mobarak, N., Cyclic voltammetry study of passivation of tin in sodium dihydrogen phosphate solution. Chemistry and Technology of Fuels and Oils, 2012. 48(4): p. 321-330.
102. Huang, B.X., P. Tornatore, and Y.-S. Li, IR and Raman spectroelectrochemical studies of corrosion films on tin. Electrochimica Acta, 2001. 46(5): p. 671-679.
103. Brunetti, V. and M.L. Teijelo, Oxide/hydroxide films on tin. Part I: Kinetic aspects of the electroformation and electroreduction of the films. Journal of Electroanalytical Chemistry, 2008. 613(1): p. 9-15.
104. Nieszporek, J., Nicotinamide as a Catalyst for Zn2+ Electroreduction in Acetate Buffer. Electrocatalysis, 2020. 11(4): p. 422-431.
105. Pan, D., L. Zhang, J. Zhuang, T. Yin, and W. Qin, A novel tin-bismuth alloy electrode for anodic stripping voltammetric determination of zinc. Microchimica Acta, 2012. 177(1): p. 59-66.
106. Smith, P.J., Chemistry of Tin. 2012, Springer Science & Business Media: Dordrecht. p. 62-65.
107. Gumpu, M.B., S. Sethuraman, U.M. Krishnan, and J.B.B. Rayappan, A review on detection of heavy metal ions in water–an electrochemical approach. Sensors and Actuators B: Chemical, 2015. 213: p. 515-533.
108. Su, Y., J. Yang, G. Liu, W. Sheng, J. Zhang, Y. Zhong, L. Tan, and Y. Chen, Acetic Acid‐Assisted Synergistic Modulation of Crystallization Kinetics and Inhibition of Sn2+ Oxidation in Tin‐Based Perovskite Solar Cells. Advanced Functional Materials, 2022. 32(12): p. 2109631.
109. El Din, A.S. and F. Abd El Wahab, On the anodic passivity of tin in alkaline solutions. Electrochimica Acta, 1964. 9(7): p. 883-896.
110. Afkhami, A., F. Soltani-Felehgari, T. Madrakian, H. Ghaedi, and M. Rezaeivala, Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples. Analytica Chimica Acta, 2013. 771: p. 21-30.
111. Yamasaki, S., U.K. Das, and K. Ishikawa, Direct observation of surface dangling bonds during plasma process: chemical reactions during H2 and Ar plasma treatments. Thin Solid Films, 2002. 407(1-2): p. 139-143.
112. Morent, R., N. De Geyter, T. Desmet, P. Dubruel, and C. Leys, Plasma surface modification of biodegradable polymers: a review. Plasma Processes and Polymers, 2011. 8(3): p. 171-190.
113. Qiu, R., H. Aboulfadl, O. Bäcke, D. Stiens, H.-O. Andrén, and M. Halvarsson, Atom probe tomography investigation of 3D nanoscale compositional variations in CVD TiAlN nanolamella coatings. Surface and Coatings Technology, 2021. 426: p. 127741.
114. Suzuki, A., S. Asaba, J. Yokoi, K. Kato, M. Kurosawa, M. Sakashita, N. Taoka, O. Nakatsuka, and S. Zaima, Reduction of Schottky barrier height for n-type Ge contact by using Sn electrode. Japanese Journal of Applied Physics, 2014. 53(4S): p. 04EA06.
115. Eckold, P., M. Sellers, R. Niewa, and W. Hügel, The surface energies of β-Sn—A new concept for corrosion and whisker mitigation. Microelectronics Reliability, 2015. 55(12): p. 2799-2807.
116. Drugs, U.N.O.o., C. Laboratory, and S. Section, Guidance for the Validation of Analytical Methodology and Calibration of Equipment Used for Testing of Illicit Drugs in Seized Materials and Biological Specimens: A Commitment to Quality and Continuous Improvement. 2009, United Nations Publications.
117. Tian, Y.Q., N.B. Li, and H.Q. Luo, Simultaneous determination of trace zinc (II) and cadmium (II) by differential pulse anodic stripping voltammetry using a MWCNTs–NaDBS modified stannum film electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2009. 21(23): p. 2584-2589.
118. Bedoya-Hincapié, C.M., J. de la Roche, E. Restrepo-Parra, J.E. Alfonso, and J.J. Olaya-Florez, Structural and morphological behavior of bismuth thin films grown through DC-magnetron sputtering. Ingeniare. Revista chilena de ingeniería, 2015. 23(1): p. 92-97.
119. Baron, J., P. Silva-Bermudez, and S. Rodil, Sputtered Bismuth thin films as trace metal electrochemical sensors. MRS Online Proceedings Library (OPL), 2012. 1477.
120. Liu, H., K.A. Antwi, Y. Wang, L. Ong, S. Chua, and D. Chi, Atomic layer deposition of crystalline Bi 2 O 3 thin films and their conversion into Bi 2 S 3 by thermal vapor sulfurization. RSC Advances, 2014. 4(102): p. 58724-58731.
121. Su, C., Z. Lu, H. Zhao, H. Yang, and R. Chen, Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity. Applied Surface Science, 2015. 353: p. 735-743.
122. Pandeeswari, R., T. Sonia, D. Balamurugan, and B. Jeyaprakash, Highly Selective Dimethylamine Vapour Sensors Based on Spray Deposited β-Bi2O3 Nanospheres at Low Temperature. Sensing and Imaging, 2022. 23(1): p. 1-22.
123. Al-Kuhaili, M., M. Daoud, and M. Mekki, Spectrally selective energy-saving coatings based on reactively sputtered bismuth oxide thin films. Optical Materials Express, 2020. 10(2): p. 449-463.
124. Kabir, L. and S.K. Mandal. Structural and optical properties of single crystalline bismuth nanoparticles in polymer. in International Journal of Modern Physics: Conference Series. 2013. World Scientific.
125. Oudghiri-Hassani, H., S. Rakass, F.T. Al Wadaani, K.J. Al-Ghamdi, A. Omer, M. Messali, and M. Abboudi, Synthesis, characterization and photocatalytic activity of α-Bi2O3 nanoparticles. Journal of Taibah University for Science, 2015. 9(4): p. 508-512.
126. Guo, P., A.M. Sarangan, and I. Agha, A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators. Applied Sciences, 2019. 9(3): p. 530.
127. Hwang, G.H., W.K. Han, S.J. Kim, S.J. Hong, J.S. Park, H.J. Park, and S.G. Kang, An electrochemical preparation of bismuth nanoparticles by reduction of bismuth oxide nanoparticles and their application as an environmental sensor. Journal of Ceramic Processing Research, 2009. 10(2): p. 190-194.
128. Borrill, A.J., N.E. Reily, and J.V. Macpherson, Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst, 2019. 144(23): p. 6834-6849.
129. Drugs, U.N.O.o., C. Laboratory, and S. Section, Guidance for the Validation of Analytical Methodology and Calibration of Equipment Used for Testing of Illicit Drugs in Seized Materials and Biological Specimens: A Commitment to Quality and Continuous Improvement. 2009: United Nations Publications.
130. Malathy, V., S. Sivaranjani, V. Vidhya, J.J. Prince, T. Balasubramanian, C. Sanjeeviraja, and M. Jayachandran, Amorphous to crystalline transition and optoelectronic properties of nanocrystalline indium tin oxide (ITO) films sputtered with high rf power at room temperature. Journal of Non-Crystalline Solids, 2009. 355(28-30): p. 1508-1516.
131. Hao, Q., R. Wang, H. Lu, W. Ao, D. Chen, C. Ma, W. Yao, and Y. Zhu, One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2017. 219: p. 63-72.
132. Gupta, S., R. Singh, M. Anoop, V. Kulshrestha, D.N. Srivastava, K. Ray, S. Kothari, K. Awasthi, and M. Kumar, Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons. Applied Physics A, 2018. 124(11): p. 1-6.
133. Han, S., J. Li, K. Yang, and J. Lin, Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal. Chinese Journal of Catalysis, 2015. 36(12): p. 2119-2126.
134. Shinde, P.V., B.G. Ghule, S.F. Shaikh, N.M. Shinde, S.S. Sangale, V. Jadhav, S.-Y. Yoon, K.H. Kim, and R.S. Mane, Microwave-assisted hierarchical bismuth oxide worm-like nanostructured films as room-temperature hydrogen gas sensors. Journal of Alloys and Compounds, 2019. 802: p. 244-251.
135. Su, J., Y. Liu, M. Jiang, and X. Zhu, Oxidation of copper during physical sputtering deposition: mechanism, avoidance and utilization. arXiv preprint arXiv:1412.2031, 2014.
136. Zhao, G., H. Wang, and G. Liu, Direct quantification of Cd2+ in the presence of Cu2+ by a combination of anodic stripping voltammetry using a Bi-film-modified glassy carbon electrode and an artificial neural network. Sensors, 2017. 17(7): p. 1558.
137. Kong, D., Y. Chen, P. Wan, S. Liu, Z.U.H. Khan, and B. Men, Pre-plating of Bismuth film electrode with coexisted Sn2+ in electrolyte. Electrochimica Acta, 2014. 125: p. 573-579.
138. Schaub, A., P. Slepička, I. Kašpárková, P. Malinský, A. Macková, and V. Švorčík, Gold nanolayer and nanocluster coatings induced by heat treatment and evaporation technique. Nanoscale Research Letters, 2013. 8(1): p. 1-8.
139. Timsit, S. Electrical contact resistance: properties of stationary interfaces. in Electrical Contacts-1998. Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts (Cat. No. 98CB36238). 1998. IEEE.
140. Vianco, P. and J. Rejent, Properties of ternary Sn-Ag-Bi solder alloys: Part I—Thermal properties and microstructural analysis. Journal of Electronic Materials, 1999. 28(10): p. 1127-1137.
141. Bozinovic, K.N., D.M. Manasijevic, L.T. Balanovic, M.D. Gorgievski, U.S. Stamenkovic, M.S. Markovic, and Z.D. Mladenovic, Study of microstructure, hardness and thermal properties of Sn-Bi alloys/Ispitivanje mikrostrukture, tvrdoce i termijskih karakteristika legura u sistemu Sn-Bi. Hemijska Industrija, 2021. 75(4): p. 227-240.
142. Guan, H., X. Zhang, and Y. Xie, Soft-chemical synthetic nonstoichiometric Bi2O2. 33 nanoflower: a new room-temperature ferromagnetic semiconductor. The Journal of Physical Chemistry C, 2014. 118(46): p. 27170-27174.
143. Wang, Z. and Y. Zhu, A simple plasma reduction for synthesis of Au and Pd nanoparticles at room temperature. Chinese Journal of Chemical Engineering, 2015. 23(6): p. 1060-1063.
144. Kokkinos, C., A. Economou, I. Raptis, and C.E. Efstathiou, Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb (II) and Cd (II) by anodic stripping voltammetry. Electrochimica Acta, 2008. 53(16): p. 5294-5299.
145. Sinha, S. and H.-H. Schmidtke, The nephelauxetic effect in rare earth complexes illustrated for praseodymium (III). Molecular Physics, 1965. 10(1): p. 7-11.
146. Gao, F. and S. Zhang, Investigation of mechanism of nephelauxetic effect. Journal of Physics and Chemistry of Solids, 1997. 58(12): p. 1991-1994.
147. Hwang, J.-H., X. Wang, D. Zhao, M.M. Rex, H.J. Cho, and W.H. Lee, A novel nanoporous bismuth electrode sensor for in situ heavy metal detection. Electrochimica Acta, 2019. 298: p. 440-448.

無法下載圖示 全文公開日期 2025/08/04 (校內網路)
全文公開日期 2032/08/04 (校外網路)
全文公開日期 2032/08/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE