簡易檢索 / 詳目顯示

研究生: 杜柏賢
Po-hsien Tu
論文名稱: 飛秒雷射之無熱加工創新研究 -心臟血管支架、玻璃內部光柵與裂片
Creative Research on Non-thermal Processing of Femtosecond Laser- Cardiovascular Stents、Internal Grating and Dicing in Glass
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 李三良
San-Liang Lee
葉文昌
Wen-chang Yeh
張復瑜
Fuh-Yu Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 111
中文關鍵詞: 飛秒雷射心臟血管支架玻璃內部光柵玻璃裂片
外文關鍵詞: femtosecons laser, cardiovascular stents, internal grating in glass, glass dicing
相關次數: 點閱:228下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要利用飛秒雷射加工技術的優點如熱影響區極小、無重鑄層、加工尺寸小等,欲解決長脈衝雷射在加工過程中會有熱效應的問題,導致加工精度無法提升及材料強度降低。本研究乃是擬分析飛秒雷射在加工過程中與材料的交互作用,選用材料為316L不鏽鋼及玻璃,嘗試使用不同雷射參數(雷射功率、焦點位置、掃描速度等)的變化對照其材料加工後狀況及尺寸,觀察微結構的變化及現象進而找出相對關係。後期研究為參考其分析結果,再應用於工程製作的可行性研究。在不鏽鋼材料部分是進行不鏽鋼之心血管支架的製作,而在玻璃材料部分是進行玻璃內部光柵及薄玻璃裂片的製作,以原理和加工結果配合,以證明飛秒雷射加工之特性與優點。期望未來可廣泛應用於半導體、生醫技術、光電能源等不同領域的微奈米製造技術。


This thesis aims to improve thermal-effect issue happened in long-pulse laser processing by femtosecond laser, of which the advantages are high machining precision, minimal burrs and negligible heat-affected-zone. The issue of long-pulse laser processing usually causes poor machining precision and reduces the strength. In this research, the experiments showed the interaction of 316L stainless steel and glass with femtosecond laser processing. Based on experimental results, specific correlations between processing parameters (scanning speed, power and focus of laser beam) and the condition of sizes and microstructures of materials can be observed. Therefore, the results can be applied to coronary stents, internal glass grating and glass dicing. Combined the principle with processing results, it showed the unique characteristics and advantages of femtosecond laser processing. So, it is promising to apply to the precision manufacturers in semiconductor, bio-medical, and optoelectronic manufacturing technology.

第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 論文架構 5 第二章 飛秒雷射文獻探討 6 2.1長脈衝雷射與超短脈衝雷射分析 6 2.1.1 長脈衝雷射之加工特性 7 2.1.2 超短脈衝雷射之加工特性 8 2.2 飛秒脈衝雷射產生原理 9 2.2.1 鎖模雷射振盪器 9 2.2.2 脈衝雷射放大器系統 12 2.3 飛秒雷射加工機制 13 2.3.1 飛秒雷射對於材料的能量轉移過程 13 2.3.2 飛秒雷射之雙溫度模型特性 16 2.3.3 材料剝離機制 19 2.3.4 飛秒雷射對材料的剝離閥值 21 2.3.5 金屬材料與透明材料移除機制 22 2.4 飛秒雷射技術文獻回顧 23 第三章 實驗規劃及儀器介紹 25 3.1實驗設計與參數規劃 25 3.1.1 雷射參數 26 3.1.2 機台參數 28 3.1.3 材料參數 31 3.2 實驗前置作業 32 3.2.1 雷射系統準備 32 3.2.2 實驗試片清潔與處理 32 3.3 飛秒雷射實驗機台 33 3.4 材料選用 36 3.4.1 材料特性考量 36 3.4.2 材料選定 37 3.5 檢測儀器設備介紹 40 3.5.1 超音波洗淨器 40 3.5.2 光學顯微鏡 40 3.5.3 掃描式電子顯微鏡 41 第四章 飛秒雷射應用於不鏽鋼心血管支架之加工研究 43 4.1 不鏽鋼實驗參數測試 44 4.1.1 功率和速度與切口寬度之關係 44 4.1.2 雷射波長與雷射停留時間對加工之效應 46 4.1.3 聚焦鏡頭對加工之效應 49 4.1.4 功率和速度與加工深度之關係 51 4.1.5 雷射聚焦點位置對加工之效應 53 4.1.6 不鏽鋼材料之切穿測試 55 4.2 飛秒雷射製作心血管支架 57 4.2.1 心血管支架設計 57 4.2.2 心血管支架之加工分析 58 4.2.3 基材懸空裝置之影響 59 4.2.4 改善雷射偏振效應之影響 61 4.2.5 不同氣體於飛秒雷射加工之影響 64 4.3 心血管支架之加工結果分析 67 4.3.1 二維心血管支架加工結果 67 4.3.2 氣球撐開術於心血管支架之實驗及結果分析 69 第五章 飛秒雷射應用於玻璃內部 74 5.1 玻璃內部之實驗參數測試及結果分析 75 5.1.1 不同數值孔徑(NA)鏡頭之效應 75 5.1.2 雷射功率對玻璃加工之效應 79 5.1.3 焦點距離對玻璃加工之效應 84 5.1.4 掃描速度對玻璃加工之效應 87 5.2 玻璃內部光柵製作 92 5.2.1 玻璃內部光柵實驗 92 5.2.2 玻璃內部光柵結果分析 94 5.3 應用於薄玻璃裂片的加工 98 5.3.1 薄玻璃裂片實驗 98 5.3.2 薄玻璃裂片實驗結果分析 100 第六章 結論與未來展望 104 6.1 結論 104 6.1.1飛秒雷射應用於316L不鏽鋼加工 104 6.1.2飛秒雷射應用於玻璃內部加工 106 6.2 未來展望 107 參考文獻 109

[1] Kononenko, Konov, Garnov and Danielius, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electronics, VOL. 29 (8) ,p724- 728 (1999).
[2] http://www.cmxr.com/applicationprofiles/index.htm Clark-MXR, Inc.
[3] Jorg Kroger and Wolfgang Kautek, “Ultrashort Pulse Laser Interaction with Dielectrics and Polymers,” Adv Polym Sci , VOL.168, p247–289 ,(2004).
[4] Rev. F, “User’s Manual of Spitfire”, Spectra-Physics Company, (2002).
[5] A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron, VOL. 16, p89–93 (1980).
[6] C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, p1784–1794, (2001).
[7] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” Optical Society of America, Vol. 13, No. 2, (1996).
[8] E. S. Bliss, “Pulse duration dependence of laser damage mechanisms,” Opto-Electronics , VOL. 3,p 99–108 (1971).
[9] I. N. Zavestovskaya, O.A. Glazov, N.A. Menkova, “High power and ultrashort laser pulse ablation of metals: threshold characteristics,” Proc. of SPIE Vol. 6735, No.12, (2007).
[10] S. I. Anisimov and B. Rethfeld, “On the theory of ultrashort laser pulse interaction with a metal,” SPIE , Vol. 3093, p192-203 (1997).
[11] R. Fedosejevs, S.E. Kirkwood, R. Holenstein, N. Young and Y.Y. Tsui, “Femtosecond Interaction Processes Near Threshold:Damage and Ablation,” Proc. of SPIE Vol. 6403, p640302, (2007).
[12] E. G. Gamaly,a) A. V. Rode, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” PHYSICS OF PLASMAS, Vol. 9, No. 3,( 2002).
[13] Kafka,Watts and Pieterse, “Picosecond and Femtosecond Pulse Generation in a Regeneratively Mode-Locked Ti:Sapphire Laser,” IEEE J. Quantum Electronics, Vol. 28, p2151-2162, (1992).
[14] M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” PHYSICAL REVIEW B, Vol.75, p235-414 (2007).
[15] Yasuhiko Shimotsuma and Kazuyuki Hirao, “Nanofabrication in transparent materials with a femtosecond pulse laser,” Journal of Non-Crystalline Solids, Vol. 352, p646–656, (2006).
[16] Jom Bonse, Steffen Baudach, JOrg KrUger and Wolfgang Kautek, “Femtosecond laser micromachining of technical materials”, High-Power Laser Ablation , Vol. 4065, (2000).
[17] M. Meuniera, B. Fisettea, A. Houlea, A. V. Kabashina, S. V. Broudeb and P. Millerb, “Processing of metals and semiconductors bya femtosecond laser-based microfabrication system”, Proceedings of SPIE,Vol. 4978 (2003).
[18] M. Gill1, W. Perrie1, P. Fox1 and W. O’Neill, “Surface nanostructuring of Ni, Ti and 316L Stainless steel using ultrafast laser interactions,” Proc. of SPIE, Vol. 5713, (2005).
[19] Alexander M. Streltsov and Nicholas F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” OPTICS LETTERS, Vol. 26, No. 1, (2001).
[20] M. Hughes, W. Yang and D. Hewak, ”Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” APPLIED PHYSICS LETTERS, Vol. 90, No.131113 , (2007).
[21] 丁勝懋,雷射工程導論,中央圖書出版社,第四版,1995。
[22] K. Venkatakrishnan, B. Tan and A. Ngoi, Opt. Eng. Vol.40, No. 12, (2001).
[23] Paul Mannion, Jonathan Magee, Edward Coyne and Gerard M, “Ablation thresholds in ultrafast laser micro-machining of common metals in air,” Proceedings of SPIE Vol. 4876, (2003).
[24] K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen and T. Jaaskelainen, “ Enhanced optical absorptance of metals using interferometric femtosecond ablation,” Laser materials processing, Vol. 15, No. 21, (2007).
[25] 黃欣怡,"雷射精密加工於常用工程材料之研究",台灣大學機械工程學系研究所碩士班,(2006).
[26] 蔡昆霖,"應用飛秒雷射對高分子及不鏽鋼金屬材料做細微加工之研究", 國立台灣科技大學, (2005).
[27] M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” PHYSICAL REVIEW B ,vol. 75, p235-414, (2007).
[28] Wenjun Wang , Xuesong Mei and Gedong Jiang, “Control of microstructure shape and morphology in femtosecond laser ablation of imprint rollers,” Int J Adv Manuf Technol, Springer-Verlag London Limited (2008).
[29] Kenichi Takahata and Yogesh Gianchandani, “A Planar Approach for Manufacturing Cardiac Stents: Design, Fabrication, and Mechanical Evaluation,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, Vol. 13, No. 6, (2004).
[30] S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben and H.Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys. A, Vol. 68, p563–567, (1999).
[31]http://www.onset-eo.com/big5/n_products/optics_&_materials/product_catalog_optical_&_materials_products3-54.htm 銓州光電股份有限公司。
[32] 雷射加工技術手冊,工業技術研究院。
[33] J. Sun and J. P. Longtin, “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure,” JOURNAL OF APPLIED PHYSICS VOL. 89, No.R 12, (2001).
[34] H. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, G.Kamlage, “Microdrilling of metalls with ultrashort laserpulses,” Proc. Laser Materials Processing Conf. ICALEO'98. Vol. 85. (1998)
[35] N. Glezer, and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Applied Physics Letters, vol. 71, p882-884 (1997).
[36] C. Florea, and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” Journal of Lightwave Technology, vol. 21, p246-253 (2003).
[37] Y. Shen, “The Principles of Nonlinear Optics,” John Wiley & Sons, Inc., New York, (1984).
[38] Chris B Schaffer, Andr´e Brodeur and Eric Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecondlaser pulses,” Meas. Sci. Technol., vol. 12, p1784–1794, (2001).

QR CODE