簡易檢索 / 詳目顯示

研究生: PHAM PHU HIEU
PHAM - PHU HIEU
論文名稱: 升壓型功率因數修正器數位控制策略之研究
Digital Control Strategy for Boost PFC Converter
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 林景源
Jing-Yuan Lin
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 55
中文關鍵詞: 不連續導通模式連續導通模式總諧波失真功率因數修正器數位控制
外文關鍵詞: Power factor correction, digital controller, total harmonic distortion, continuous conduction mode, discontinuous conduction mode
相關次數: 點閱:405下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

功率因數修正器是將輸入電流重新塑形以減少主要諧波上的虛功率損耗。在交流輸入的電源供應器裡,功率因數修正器電路廣泛的討論,在高功率應用中,升壓型功率因數修正轉換器通常操作在連續導通模式,而選擇的控制晶片通常為UC3854,然而操作在低功率的範圍時部分週期會出現不連續導通模式,造成輸入電流失真。此外當轉換器操作在高壓輸入,負載為輕載時,EMI濾波器會造成輸入電壓與輸入電流的相位差。類比晶片內建的功能無法適應操作在各種模式下的電路,導致功率因數變差和總諧波失真提高。利用數位控制的優點,實現更複雜的控制方式以改善功率因數和總諧波失真,有靈活性高、減少元件的數量、抗雜訊能力強、低成本及高效率等優點,研究並應用在升壓型功率因數修正轉換器上的數位控制器是個吸引人的題目。
本論文所提出的數位控制方式採用取樣修正、前饋責任週期和EMI濾波電容器電流注入演算法,以解決上述的問題。實現400W升壓型功率因數修正轉換器,以驗證所提出的控制演算法可行性,實驗結果顯示在連續導通模式與不連續導通模式下,功率因數與總諧波失真皆有改進


Power factor correction (PFC) shapes the input current to minimize the reactive power drawing from the mains. The use of PFC circuits is widely discussed and considered for most off-line power supplies. For high power applications, boost PFC converter operated in continuous conduction mode is usually employed and controlled by analog ICs such as UC3854. However, when the converter operates at lower power range, discontinuous conduction mode will appear during parts of line period, causing input current distortion. Moreover, the input EMI filter causes the significant displacement between input voltage and input current when the converter operates at high-line light-load condition. With functions integrated inside analog ICs, they cannot be adapted to various mode of operation of circuit, resulting in poor power factor (PF) and high total harmonic distortion (THD). In order to implement more complex control scheme to improve PF and THD, the advantages of digital control are exploited. With flexibility, decreased number of components, less sensitivity with change of noise, low cost and increased performance, the digital controller is an interesting topic to research and employ for boost PFC converter.
In this thesis, the digital controller what employs the Sample Correction, Duty Ratio Feed Forward and EMI filter capacitance current injection algorithms is proposed to solve above problems. A 400W Boost PFC prototype is implemented to verify the feasibility of the proposed control algorithms. The experimental results show the PF and THD improvements in both CCM and DCM operations.

Content Abstract i Acknowledgement ii Content iii List of Figures v List of Tables viii List of Abbreviations ix Chapter 1 Introduction 1 1.1 Background and motivation .................................................................................... 1 1.2 Organization of thesis ............................................................................................. 3 Chapter 2 Literature review 4 2.1 Operational principle of boost PFC topology ........................................................ 4 2.2 Modeling of analog boost PFC converter ............................................................... 7 Chapter 3 Digital control strategy for boost PFC converter 17 iv 3.1 Digital PI compensator ......................................................................................... 17 3.2 Current sample correction algorithm .................................................................... 20 3.3 Duty ratio feed forward for current controller ...................................................... 23 3.4 EMI filter capacitance current injection ............................................................... 28 Chapter 4 Implementation and experimental results 32 4.1 Design of boost PFC converter ............................................................................. 32 4.2 Software implementation ...................................................................................... 36 4.3 Experimental results.............................................................................................. 38 4.4 PF and THD improvement .................................................................................... 47 Chapter 5 Conclusion and future research 51 5.1 Conclusion ............................................................................................................ 51 5.2 Future research ...................................................................................................... 51 Reference 53

Reference
[1] Simonetti, F. Viera, and D. Sousa, "Modelling of the high-power-factor discontinuous boost rectifiers," IEEE Trans. Ind. Appl., vol. 19, no. 4, pp. 586-559, Jul. 1983
[2] Lyrio Simonetti, D.S., J. Sebastian, and J. Uceda, "The discontinuous conduction mode Sepic and Cuk power factor preregulators: analysis and design," IEEE Trans. Ind. Electron., vol. 44, no. 5, pp. 630-637, Oct. 1997
[3] M. Kocher and R.L. Steigerwald, "An AC-to-DC Converter with High Quality Input Waveforms," IEEE Trans. Ind. Appl., vol. 19, no. 4, pp. 586-599, Jul. 1983
[4] A. Mitwalli, S. Leeb, G. Verghese, and V. Thottuvelil, "An adaptive digital controller for a unity power factor converter," IEEE Trans. Power Electron., vol. 11, no. 2, pp. 374-382, Mar. 1996
[5] K. De Gusseme, D.M. Van de Sype, and J.A.A. Melkebeek, "Design issues for digital control of boost power factor correction converters," in Proc. IEEE Int. Symp. Industrial Electronics, L'Aquila, Italy, Jul. 8-11, 2002, pp. 731-736.
[6] K. De Gusseme, D.M. Van de Sype, and J.A.A. Melkebeek, "Digitally controlled boost power-factor-correction converters operating in both continuous and discontinuous conduction mode," in Proc. IEEE PESC'04, Aachen, Germany, vol. 3, pp. 2346-2352, Jun. 20-25, 2004,.
[7] S. Wall and R. Jackson, "Fast controller design for single-phase power-factor correction systems," IEEE Trans. Ind. Electron., vol. 44, no. 5, pp. 654-660, Oct. 1997.
[8] J. Chou, Z. Lu, Z. Lin, Y. Ren, Z. Qian, and Y. Wang, "Novel sampling algorithm for DSP controlled 2 kW PFC converter," IEEE Trans. Power Electron., vol. 16, no. 2, pp. 217-222, Mar. 2001.
[9] S. Buso, P. Mattavelli, L. Rossetto, and G. Spiazzi, "Simple digital control improving dynamic performance of power factor preregulators," IEEE trans. Power Electron., vol. 13, no. 5, pp. 814-823, Sep. 1998.
[10] L. Dixon, "Optimizing the Design of High Power Factor Switching Preregulator," Unitrode Power Supply Design Seminar, 1990.
54
[11] B. Bryant, and M.K. Kazimierczuk, "Modeling the closed-current loop of PWM boost DC-DC converters operating in CCM with peak current-mode control," IEEE trans. Circuit and System I, vol. 52, no. 11, pp. 2404-2012, 2005.
[12] I. J. Prasuna, M. S. Kavya, K. Suryanarayana, and B. R. Shrinivasa Rao, "Digital peak current mode control of boost converter," International conference on Emergency research areas (AICERA/iCMMD), pp. 1-6, 2014.
[13] K. Suryanarayana, L. V. Prabhu, S. Anantha, K. Vishwas, "Analysis and modeling of digital peak current mode control," International conference on Power Electronic: Drives and Energy System (PEDES), pp. 1-6, 2012.
[14] Hye-Jin Kim, Gab-Su Seo, Bo-Huang Cho, Hangseok Choi, "A Simple Average Current Control With On-Time Doubler for Multiphase CCM PFC Converter," IEEE trans. Power Electron., vol. 30, no. 3, pp. 1683-1693, Apr. 2014.
[15] T. K Jappe, and S. A. Mussa, "Current control techniques applied in PFC boost converter at instantaneous power interruption," IECON '09 Annual conference of IEEE on Industrial Electronics, pp. 346-351, 2009.
[16] L. Shu Fan, and A.M. Khambadkone, "A simple digital DCM control scheme for boost PFC operating in both CCM and DCM," Conference on Energy conversion congress and exposition (ECCE), pp. 1218-1225, 2010.
[17] Phillip C. Todd, "UC 3854 Controlled Power Factor Correction Circuit Design," Texas Instruments Power Supply Control Products, 1999.
[18] David M. Van de Sype, K. De Gusseme, A. P. M. Van den Bossche, and J. A. Melkebeek, "Duty-ratio feedforward for digitally controlled boost PFC converters," IEEE trans. Industrial Electron., vol. 52, no. 1, pp. 108-115, Feb. 2005.
[19] David M. Van de Sype, K. De Gusseme, A. P. M. Van den Bossche, and J. A. Melkebeek, "A sampling algorithm for digitally controlled boost PFC converters," IEEE trans. Power Electron., vol. 19, no. 3, pp. 649-657, May. 2004.
[20] A. I. Pressman, "Switching Power Supply Design," McGraw-Hill, 2nd edition, 1998.
[21] I. Bataseh, "Power Electronic Circuits," John Wiley & Sons Inc., 1st edition, 2004.
[22] Robert W. Erickson, and Dragan Maksimovic, "Fundamentals of Power Electronics," Springer, 2nd edition, Jan. 2011.
55
[23] L. Dixon, "High Power Factor Preregulators for Off-Line Power Supplies," Unitrode Power Supply Design Seminar Manual SEM700, 1990.
[24] V. Bobal, J. Bohm, J. Fessl, and J. Machacek, "Digital Self-tuning Controllers," Springer, 2005 edition, May. 2005.
[25] C. Basso, "Switch-Mode Power Supplies Spice Simulations and Practical Designs," McGraw-Hill, 1st edition, Feb. 2008.
[26] J. B. Williams, "Design of feedback loop in unity power factor AC to DC converter," on PESC '89 record, 20th Annual IEEE Power Electronics specialists conference, vol. 2, pp. 959-967, Jun. 1989.
[27] David M. Van de Sype, K. De Gusseme, A. P. M. Van den Bossche, and J. A. Melkebeek, "Small-signal Laplace-domain analysis of uniformly-sampled pulse-width modulators," on PESC '04 record, 35th Annual IEEE Power Electronics specialists conference, vol. 6, pp. 4292-4298, Jun 2004.
[28] V. Vlatkovic, D. Borojevic, F. C. Lee, "Input filter design for power factor correction circuits," IEEE trans. Power Electron., vol. 11, no. 1, pp. 199-205, Jan. 1996.
[29] Texas Instruments, "TMS2803x Piccolo System Control and Interrupts - Reference Guide," Datasheet, May 2009.
[30] Texas Instruments, "C28x IQ-Math library," Datasheet, Oct. 2005.

QR CODE