簡易檢索 / 詳目顯示

研究生: 李峻宇
Chun-yu Li
論文名稱: 輸出電壓可調式電源供應器之研製
Study and Implementation of a Power Supply with Adjustable Output Voltage
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 林景源
Jing-yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 97
中文關鍵詞: 可調式電源供應器降壓型功率因數修正器串聯諧振式轉換器同步整流數位化降壓型轉換器
外文關鍵詞: Adjustable power supply, buck power factor corrector, half-bridge series resonant converter, synchronous rectification, digitally-controlled buck converter.
相關次數: 點閱:344下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要研製一台輸出電壓可調式電源供應器,所採用之架構由三級電路所組成:第一級電路為降壓型功率因數修正器,改善電源的功率因數,進而達到良好的電力品質。第二級電路為具有同步整流之半橋串聯諧振式轉換器,利用零電壓切換與同步整流技術,以達到高轉換效率的要求。第三級電路為數位化降壓型轉換器,採用德州儀器所開發的數位信號處理器TMS320F28035作為控制器,並調整輸出電壓的範圍。
    最後設計並實作出一台57 W寬範圍電壓輸入之可調式電源供應器,其輸出電壓範圍為5 V至19 V,在115 Vac交流電壓輸入下,輸出電壓15 V時,整機最高效率可達85.98 %。


    This thesis focuses on the study and implementation of a power supply with adjustable output voltage. The converter structure consists of three stages: The first-stage circuit is a buck power factor corrector (PFC) to improve the input power factor. The second-stage circuit is a half-bridge series resonant converter. In order to further improve the efficiency, zero-voltage switching and synchronous rectification technologies are adopted. The third-stage circuit is a digitally-controlled buck converter. A digital signal processor, TMS320F28035 developed by Texas Instruments, is used as the controller to adjust the output voltage.
    In this thesis, a 57-W adjustable power supply with universal input voltage and an output voltage ranging from 5 V to 19 V is designed and implemented. The peak efficiency can be up to 85.98% at 115-Vac input voltage and 15-V output voltage.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 第二章 系統簡介 4 2.1 系統簡介 4 2.2 論文內容大綱 7 第三章 降壓型功率因數修正器架構與動作原理 9 3.1 功率因數與總諧波失真之定義 9 3.2 降壓型功率因數修正器 14 3.3 箝位電流控制模式 16 3.4 降壓型功率因數修正器之動作分析 19 第四章 半橋串聯諧振式轉換器 24 4.1 理想R-L-C串聯諧振電路 24 4.2 半橋串聯諧振式轉換器 27 4.2.1 諧振模式分析 28 4.2.2 SRC電路動作分析 30 4.3 SRC與LLC之分析比較 38 4.4 諧振槽分析 40 4.4.1 Q值對增益轉移函數的影響 42 4.4.2 K因子對增益轉移函數的影響 43 4.5同步整流技術 45 第五章 數位控制介紹與設計流程 47 5.1 數位化降壓型轉換器電路動作 47 5.2 輸出電壓回授取樣電路 49 5.3 ePWM架構 51 5.4 系統流程規劃 52 5.4.1系統初始化 52 5.4.2 ADC中斷服務副程式 53 第六章 整機電源轉換器設計 54 6.1 降壓型功率因數修正器之設計 54 6.1.1 控制IC UC3842 54 6.1.2 降壓型功率因數修正器電路規格 56 6.1.3 降壓型功率因數修正器功率級元件設計 56 6.2 半橋串聯諧振式轉換器設計 62 6.2.1 控制IC CM6901 62 6.2.2 串聯諧振式轉換器電路規格 63 6.2.3 串聯諧振式轉換器功率級元件設計 64 6.3 數位化降壓型轉換器設計 70 6.3.1 數位控制IC TMS320F28035 70 6.3.2 數位化降壓型轉換器電路規格 71 6.3.3 數位化降壓型轉換器功率級元件設計 71 第七章 實驗數據與實驗結果 74 7.1 單相式降壓型功率因數修正器量測數據 74 7.1.1 實驗波形 74 7.1.2 實驗數據 77 7.2 半橋串聯諧振式轉換器量測數據 77 7.2.1 實驗波形 77 7.2.2 實驗數據 80 7.3 整機量測數據 80 7.3.1 實驗波形 80 7.3.2 實驗數據 86 第八章 結論與未來展望 91 8.1 結論 91 8.2 未來展望 92 參考文獻 93

    [1]A. I. Pressman, Switching Power Supply Design, Third Edition, McGraw-Hill, 2009.
    [2]梁適安,交換式電源供給器之理論與實務設計,第二版,台北:全華圖書,2008年。
    [3]O. Garcia, J. A Cobos, R. Prieto, P. Alou, and J. Uceda, “Single- phase power factor correction: a survey,” IEEE Transaction on Power Electronics, vol. 18, no. 3, pp. 749-755, June 2003.
    [4]J. Dukdrik, P. Spanik, and N. D. Trip, “Zero-voltage and zero-current switching full-bridge dc-dc converter with auxiliary transformer,” IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1328-1335, Sept. 2006.
    [5]F. T. Wakabayashi and C. A. Canesin, “A new family of zero-current-switching PWM converters and a novel HPF-ZCS-PWM boost rectifier,” in. Proc. IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 605-611, Mar. 1999.
    [6]C. A. Canesin and I. Barbi, “Novel zero-current-switching PWM converters,” IEEE Transactions on Industrial Electronics, vol. 44, no. 3, pp. 372-381, June 1997.
    [7]C. M. Wang, “A new family of zero-current-switching (ZCS) PWM converter,” IEEE Transactions on Industrial Electronics, vol. 52, no. 4, pp. 1117-1125, Aug. 2005.
    [8]Texas Instruments Inc, “Power factor correction using the buck topology-efficiency benefits and practical design considerations,” Application Note SLUP264, June 2010.
    [9]Teaxs Instruments Inc., “UCC29910 Buck PFC Controller,” Datasheet, June 2010.
    [10]陳育文,交錯式降壓型功率因數修正器之研製,國立台灣科技大學電子工程系碩士論文,中華民國102年。
    [11]S. C. Wong, A. D. Brown, Y. S. Lee, and S. W. Ng, “Parasitic losses modeling of a series resonant converter circuit,” in Proc. IEEE International Symposium on Circuits and Systems, vol. 2, pp. 921-924, June 1997.
    [12]A. K. S. Bhat, “Analysis and design of a modified series resonant converter,” IEEE Transactions on Power Electronics, vol. 8, no. 4, pp. 423-430, Oct. 1993.
    [13]B. Yang, “Topology Investigation for Front End DC/DC Power Conversion for Distributed Power System,” Ph.D. Dissertation, Sept. 2003.
    [14]M. K. Kazimierczuk and S. Wong, “Frequency-domain analysis of series resonant converter for continuous conduction mode,” IEEE Transactions on Power Electronics, vol. 7, no. 2, pp. 270-279, Apr. 1992.
    [15]R. Liu, C. Q. Lee, and A. K. Upadhyay, “Experimental study of the LLC-type series resonant converter,” in. Proc. IEEE Applied Power Electronics Conference and Exposition, pp. 31-37, Mar. 1990.
    [16]R. L. Ozenbaugh, “EMI filter design,” Marcel Dekker, Inc. 1996.
    [17]C. A. Canesin and I. Barbi, “Analysis and design of constant- frequency peak-current-controlled high-power-factor boost rectifier with slope compensation,” in Proc. IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 807-813, Mar. 1996.
    [18]曾軍皓,高效能功率因數修正器研製,國立台灣科技大學電子工程系研究所碩士論文,中華民國95年。
    [19]Texas Instruments Incorporated, “UC3854 High Power Factor Preregulator” 1999.
    [20]L. Huber and M. M. Jovanović, “Design-oriented analysis and performance evaluation of clamped-current-boost input-current shaper for universal-input-voltage range,” IEEE Transactions on Power Electronics, vol. 13, no. 3, pp. 528-537, May 1998.
    [21]L. Huber, L. Gang, and M. M. Jovanovic, “Design-oriented analysis and performance evaluation of buck PFC front-end,” IEEE Transactions on Industrial Electronics, vol. 25, no. 1, pp. 85-94, May 2010.
    [22]謝孟軒,交錯式降壓型功率因數修正器電磁干擾研究,國立台灣科技大學電子工程系碩士論文,中華民國102年。
    [23]On Semiconduction, “Ramp Compensation for the NCP1200,” Application Note, Mar. 2001.
    [24]陳揚斌,高效率LLC同步整流串聯諧振轉換器之研製,國立台灣科技大學電子工程系碩士論文,中華民國98年。
    [25]彭譽耀,交錯式半橋串聯諧振轉換器研製,國立台灣科技大學電子工程系碩士論文,中華民國101年。
    [26]Texas Instruments, “TMS320F28030/28031/28032/28033/28034/
    28035 Piccolo Microcontrollers,” Reference Guide, May 2012.
    [27]A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th Edition. New York: Oxford University Press, 2004, pp. 82-83.
    [28]Texas Instruments, “TMS320x2802x, 2803x Piccolo Analog to Digital Converter (ADC) and Comparator,” Reference Guide, Dec. 2011.
    [29]蔡富斌,具同步整流之數位控制半橋串聯諧振轉換器之研製,國立台灣科技大學電子工程系碩士論文,中華民國101年。
    [30]Texas Instruments, “TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module,” Reference Guide, Mar. 2011.
    [31]TMicroelectronics Inc, “UC3842 Current Mode PWM Controller,” Datasheet, June 1999.
    [32]Champion, “CM6901 Resonant Controller,” Datasheet, Nov. 2009.

    無法下載圖示 全文公開日期 2017/07/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE