簡易檢索 / 詳目顯示

研究生: 王柏翔
Po-Hisang Wang
論文名稱: Normal mode與Reverse mode雙穩態高分子穩固膽固醇液晶光閥之製備與光電特性探討
Preparation and optical property of normal mode and reverse mode bistable polymer stabilized cholesteric light shutter
指導教授: 李俊毅
Jiunn-Yih Lee
口試委員: 邱士軒
none
王英靖
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 97
中文關鍵詞: 高分子網狀結構高分子穩定膽固醇液晶雙穩態光閥
外文關鍵詞: polymer networks, polymer stabilized cholesteric texture, bistable light shutter
相關次數: 點閱:332下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要內容為嘗試利用改良高分子穩固膽固醇液晶紋理 (Polymer Stabilized Cholesteric Texture;PSCT)之材料組成,改善傳統液晶光閥之高耗能的缺點,並探討其光電性質。研究分為兩大實驗系統,首先,利用摻混一分子購型較長之紫外光聚合單體RM257,其光照聚合後所形成之纖維狀高分子網狀結構,與另一種米粒狀結構之單體作對比;更進一步,利用對液晶配相能力較好之纖維狀結構高分子網,找出其光電性質最適化條件並製成雙穩態光閥,改善傳統液晶光閥之高耗能缺點。
本研究第一部分為探討網狀高分子型態對Reverse 模式高分子穩定膽固醇液晶紋理,因施加垂直試片基板方向之高電壓脈衝後,所產生的扭曲現象之影響。利用分子結構具有軟段部分的長碳鏈及酯基拉長硬核的紫外光硬化單體,所形成適當的網狀高分子型態,發生扭曲後可穩定散射態焦錐扇紋理,而經回溫處理後可回復至透明態平面紋理。隨著單體濃度的增加,所形成之網狀高分子抵抗垂直試片基板方向之高電壓脈衝的能力增強,導致扭曲現象越趨不明顯,也越不易於利用回溫處理切換液晶態。並比較其纖維狀和米粒狀之高分子網狀結構結構在Reverse mode PSCT之差異性。
本研究第二部分為針對正向模式PSCT光閥,藉由提高紫外光高分子聚合單體濃度,利用增加遲滯現象之效果,製備不同旋光基濃度之PSCT光閥,隨著其旋光基濃度增加,膽固醇液晶之螺距下降,造成散射態之焦錐扇紋理區塊逐漸縮小,此雙穩態光閥之對比度會上升,且轉變回散射態之回溫處理所需溫度也較低,成功製成電場-熱能可切換雙穩態正向模式PSCT光閥(Electro-thermal switchable bistable normal mode PSCT light shutter, normal mode ETSB-PSCT light shutter)於最適化條件。


The first part of our research, the bistable mechanism in reverse mode PSCT is a result of a polymer distortion effect induced by applying a high voltage pulse. It was found that long-pitch cholesteric liquid crystals will maintain a focal-conic texture by a distorted polymer network which exhibits a translucent state. An annealing treatment method was used to recover cholesteric liquid crystals back to the planar texture through alignment layers. We compared the ET-RPSCT cells in different polymer network structures, which were built from different UV curable diacrylate monomers and concentrations, resulting in different anchoring forces and polymer distortion effects. We found that when the polymer network structure is tight and fiber-like, the long-pitch cholesteric liquid crystals is more stable in the focal-conic texture because of polymer distortion, and is resistant to switching states. On the other hand, the long-pitch cholesteric liquid crystals recover to the planar texture easily by thermal switching due to a loose and grain-like polymer network structure. Furthermore, the effects of polymer structure on the electro-optical performance of ET-RPSCT were also investigated.
The second part of our research, we utilized higher concentrations of monomers to enhance hysteresis of conventional normal mode. As the chiral dopant concentrations increased, the pitch of the cholesteric liquid crystal decreased and the scattering focal conic state domains trended to decrease. The electro-optical experiments indicated that the contrast ratio of the transparent and scattering states of the PSCT increased and the required annealing temperature for reverting to the scattering focal conic state decreased. Finally we success to develop the electro-thermal switchable bistable normal mode PSCT light shutter, normal mode ETSB-PSCT light shutter with various chiral dopant concentrations and the effects of the chiral dopant concentrations on the morphology of polymer network and electro-optical performances of ETSB-PSCT were studied.

目錄 中文摘要.......................................................................................................................II Abstract.......................................................................................................................IV 致謝.............................................................................................................................VI 第一章、緒論.................................................................................................................1 1-1 研究動機與目的................................................................................................1 1-2 液晶簡介............................................................................................................3 1-2-1 何謂液晶.....................................................................................................3 1-2-2 液晶的分類.................................................................................................4 1-3 液晶的物理特性..............................................................................................13 1-3-1 液晶之光學異相性...................................................................................13 1-3-2 液晶之連續彈性體...................................................................................15 1-3-3 液晶之介電性質.......................................................................................16 1-4 膽固醇型液晶..................................................................................................18 1-4-1 膽固醇型液晶的種類...............................................................................18 1-4-2 膽固醇型液晶的結構...............................................................................19 1-4-3 膽固醇型液晶的光學特性.......................................................................21 1-4-4 高分子穩定膽固醇液晶紋理...................................................................23 第二章、實驗...............................................................................................................26 2-1 實驗文獻回顧..................................................................................................26 2-2 實驗系統概述..................................................................................................30 2-3 實驗材料與設備..............................................................................................32 2-3-1 實驗材料...................................................................................................32 2-3-2 實驗設備...................................................................................................34 2-4 實驗製程..........................................................................................................35 2-4-1 反向模式PSCT製程................................................................................35 2-4-2 正向模式PSCT製程................................................................................37 2-5 光電性質量測..................................................................................................40 2-6 液晶紋理圖觀察..............................................................................................41 2-7 掃描式電子顯微鏡觀察..................................................................................42 第三章、結果與討論...................................................................................................43 3-1 純膽固醇液晶之光電性質研究......................................................................43 3-2 反向模式PSCT之光電性質研究...................................................................46 3-3 正向模式PSCT之光電性質研究...................................................................56 第四章、結論...............................................................................................................77 第五章、未來與展望...................................................................................................79 第六章、參考文獻.......................................................................................................80

1. F. Reinitzer, Monatshefte, Monatshefte fur Chemie 9, 421 (1888).
2. F. Reinitzer, Monatshefte, Ann. Physik. 27, 213 (1908).
3. O. Lehmann, Z. Physik. Chem. 4, 462 (1889).
4. O. Lehmann, Z. Ann. Physik. 25, 852 (1908).
5. G. Friedel, Ann. Physik. 18, 273 (1922).
6. P. J. Collings, Michael Hird, Introduction to Liquid Crystals Chemistry and Physics, Taylor & Francis, London, (1996).
7. 楊怡寬、郭蘭生、鄭殷立編譯,液晶化學及物理入門,偉明圖書有限公司 (2001)。
8. S. Chandrasekhar and F. R. S., “Liquid Crystals,” Cambridge University Press,USA (1992).
9. G. W. Gray, Thermotropic Liquid Crystals, John Wiley & Sons, New York, (1987).
10. K. L. Micellization, Solubilization and Microemulsions, Plenum Press. (1997).
11. Birendra Bahadur, Liquid Crystals -- Applications and Uses, Vol. 1, World Scientific Press, Singapore (1990).
12. V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications, Artech House Publishers, Boston, London, (1999).
13. F. Rondelez, H. Arnould and C. J. Gerritsma, Phys. Rev. Lett. 28, 735 (1972).
14. S. Chandrasekhar, B. K. Sadashiva and K. A. Suresh, Pramana 9, 471 (1977).
15. P. J. Collings, Liquid Crystals: Nature's Delicate Phase of Matter, Princeton University Press, New Jersey, (1990).
16. S.-T Wu, D. Coates and E. Bartmann, Mol. Cryst. Liq. Cryst. 10, 635 (1991).
17. 劉瑞祥譯,液晶之基礎與應用,國立編譯館出版 (1996)。
18. P. G. Gennes and J. prost, “The Physics of Liquid crystals,” Clarendon Press, Oxford (1993).
19. C. W. Oseen, Trans. Faraday Soc. 29, 883 (1933).
20. H. Zocher, Trans. Faraday Soc. 29, 945 (1933).
21. F. C. Frank, Disc. Faraday Soc. 25, 19 (1958).
22. G. P. Crawford and S. Zumer, “Liquid Crystals in Complex Geometries – Formed by polymer and porous networks,” Taylor & Francis (1996).
23. R. Bao, C.-M. Liu, D.-K. Yang, Appl. Phys. Express 2 112401-1–112401-3 (2009).
24. J. Ma, L. Shi, D.-K. Yang, Appl. Phys. Express 3 021702-1–021702-3 (2010).
25. Rajaram, C.V. and Hudson, S.D., Chem. Mater. 7, 2300-2308 (1995).
26. Muzic, D.S., Rajaram, C.V., Chien, L.C. and Hudson, S.D., Polymers for Advanced Technologies. 7, 737-742 (1996).
27. Liang, H.H., Wu, C.C., Wang, P.H. and Lee, J.Y., 2011. Optical Materials. 33, 1195-1202 (2011)
28. D. -K. Yang, L. -C. Chien and J. W. Doane, Appl. Phys. Lett. 60, 3102 (1992).
29. D. -K. Yang, J. L. West and J. W. Doane, Appl. Phys. Lett. 76, 1331 (1994).
30. I. Dierking, L. L. Kosbar, A. Afzali-Ardakani , A. C. Lowe and G. A. Held, J. Appl. Phys. 81, 3007 (1997).
31. I. Dierking, L. L. Kosbar, A. C. Lowe and G. A. Held, Liq. Cryst. 24, 387 (1998).
32. I. Dierking, L. L. Kosbar, A. C. Lowe and G. A. Held, Liq. Cryst. 24, 397 (1998).
33. I. Dierking, Adv. Mater. 12, 167 (2000).
34. S. -T. Wu, Reflective Liquid Crystal Displays, Wiley-VCH, New York, (2001).
35. G. Crawford and S. Zumer, Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, Taylor & Francis, London, (1996).
36. R. -Q. Ma and D. -K. Yang, Phys. Rev. Lett. 61, 1567 (2000).
37. S. Kang, S. Sprunt and L. C. Chien, Appl. Phys. Lett. 76, 3516 (2000).
38. S. N. Lee, S. Sprunt and L. C. Chien, Liq. Cryst. 28, 637 (2001).
39. C. Binet, M. Mitov and M. Mauzac, J. Appl. Phys. 90, 1730 (2001).
40. S. -T. Wu and D. -K. Yang, Reflective Liquid Crystal Displays, Wiley, New York, (2001).
41. H. Ren and S. -T. Wu, J. Appl. Phys. 92, 797 (2002).
42. E. Nouvet and M. Mitov, Mol. Cryst. Liq. Cryst. 413, 515 (2004).
43. M. Mitov, E. Nouvet and N. Dessaud, Eur. Phys. J. E 15, 413 (2004).
44. D. K. Kim and B. K. Kim, Liq. Cryst. 33, 469 (2006).
45. C. Y. Huang, Y. S. Chih and S. W. Ke, Appl. Phys. B 86, 123 (2007).
46. S. Y. Lu and L. C. Chien, Appl. Phys. Lett. 91, 131119 (2007).
47. C. -J. Tien and C. -Y. Huang, Jpn. J. Appl. Phys. 47, 8515 (2008).
48. Z. Ge, S. Gauza, M. Jiao, H. Xianyu and S. T. Wu, Appl. Phys. Lett. 94, 101104 (2009).
49. Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang and H. Yang, J. Appl. Polym. Sci. 111, 1353 (2009).
50. R. A. Weiss and C. K. Ober, Liquid-Crystalline Polymers, American Chemical Society, Washington DC, (1990).

QR CODE