簡易檢索 / 詳目顯示

研究生: 陳進來
Chin-Lai Chen
論文名稱: 有機/無機混成材製備及其對織物機能化加工應用研究
Preparation and Application of Organic-Inorganic Hybrid Materials for the Processing of Functional Fabrics
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 黃國賢
Kuo-Shien Huang
張豐志
Feng-Chih Chang
陳幹男
Kan-Nan Chen
黃繼遠
Chi-Yuan Huang
陳鴻助
Hong-Chu Chen
吳進三
Chin-Sun Wu
王英靖
Ying-Jing Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 140
中文關鍵詞: 同浴處理幾丁聚醣熟化膠化溶膠-凝膠混合與反應互穿網路結構氟碳共聚合物潑水潑油水解混成材
外文關鍵詞: Ageing, mixing and reaction, interpenetrating polymer network, fluorocarbon polymer, oil repellent, water repellent, hybrid materials.hydrolysis, simultaneous bathing
相關次數: 點閱:259下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係針對有機/無機混成材製備及其對織物機能化加工應用進行研究;研究共分成三大部分,第一部分首先製備氟碳共聚合物及其混成材,經以各種儀器分析發現氟碳聚合物確實能與SiO2產生氫鍵結合而製成混成材,由於無機相SiO2之加入,而使混成材之孔洞及表面積亦隨之增加,同時以TGA檢測四種成品之熱穩定性依序為氟碳共聚合物/ SiO2混成材 >氟碳聚合物/ SiO2混成材 >氟碳共聚合物 >氟碳聚合物。第二部分將上述四種氟碳共聚合物或其混成材在不同加工流程及方式下對棉織物行潑水、潑油加工,探討其對加工織物性質之影響,經研究結果得知,以氟碳共聚合物處理之加工布具有最大之潑水、潑油接觸角,獲得最佳之潑水、潑油效果,而以氟碳共聚合物/ SiO2行同浴處理之加工織物強力最佳,但其柔軟性較差。另以合成之藥劑做加工時,其加工方式或順序對加工布之接觸角及白度影響並不是很大,但對強力卻有明顯的影響,在耐水洗堅牢度方面,在經過十次水洗後加工布之接觸角僅降低3%左右。綜合而言,先以TEOS預處理再施予氟碳聚合物處理之加工布,會具有較佳的物理性能。第三部分係藉由溶膠-凝膠法,以不同重量比之TEOS/VTES與Chitosan製成有機/無機混成材料,經FTIR及NMR分析確認有機/無機混成材內之Chitosan與SiO2間會形成氫鍵結合,並於表面形態分析發現較多VTES與TEOS添加後,由於Chitosan表面覆蓋一層均勻無機相SiO2互穿網路結構,使得Chitosan混成材隨著VTES/TEOS重量比增加而具有含量較高的矽、碳、氧原子含量及較佳的耐熱性、抗紫外線效果等,惟Chitosan-VTES/SiO2混成材隨著TEOS添加量達到2.4克時,其機械性質出現不升反降的結果。


    There are three parts in this thesis. The first part is to prepare a fluorocarbon polymer and its hybrid materials. It is found that fluorocarbon copolymers can produce hydrogen bonds with SiO2 to form hybrid materials. Thermogravimetric (TGA) is used to test the thermostabilities of the four products, which are ranked as follows: fluorocarbon copolymer/SiO2 hybrid material > fluorocarbon polymer/SiO2 hybrid material > fluorocarbon copolymer > fluorocarbon polymer. In addition, it is found that, due to the inorganic SiO2 used, the number of pores and the specific surface areas of the hybrid materials both increased. In the second part, different procedures are used to study water and oil repellent effect on cotton fabrics with fluorocarbon copolymer or its hybrid materials. The experimental results indicate that fabric treated with fluorocarbon copolymer have larger contact angle for water and oil repellent finish, and the fabric treated with simultaneous bathing of fluorocarbon copolymer/ SiO2 are the strongest but have poorer softness. Furthermore, when processing with chemical compounds, the processing methods and steps have little effect on the fabric’s angle of contact and bleaching, but have more significant influence on strength. Regarding washing fastness, after ten-time water washing, the angle of contact of treated fabrics decreased by about 3% only. Overall, the fabric pre-treated with TEOS, followed by fluorocarbon polymer, has the best balance of physical properties. In the third part, the study explores the strength and thermal properties of various hybrid materials that are made of Tetraethoxysilane/Vinyltriethoxysilane (TEOS/VTES) and Chitosan in different weight ratios. It is confirmed, from Micro Fourier transform infrared (Micro FT-IR) and nuclear magnetic resonance (NMR) analysis, that hydrogen bonds emerging between Chitosan and SiO2 in hybrid materials. With the addition of more VTES and TEOS, the surface of the hybrid material features thick granules. In addition, the mechanical performance and thermostability of both types of hybrid are better than pure Chitosan. The former is enhanced with an increasing amount of TEOS until it exceeds 2.4 g and the latter is also improved with an increasing amount of TEOS.

    中文摘要---------------------------------------------------------------------------Ⅰ 英文摘要---------------------------------------------------------------------------Ⅲ 誌謝---------------------------------------------------------------------------------Ⅴ 目錄---------------------------------------------------------------------------------Ⅵ 圖表索引----------------------------------------------------------------------------Ⅹ 第一章 緒論----------------------------------------------------------------------1 1-1 前言----------------------------------------------------------------------------1 1-2 文獻回顧---------------------------------------------------------------------6 1-2-1 奈米材料----------------------------------------------------------------6 1-2-2 有機/無機混成材-----------------------------------------------------12 1-2-3 溶膠-凝膠(Sol-Gel)反應-------------------------------------------16 1-2-3-1 溶膠-凝膠法(sol-gel method)的發展歷程-----------------20 1-2-3-2 水含量的多寡對溶膠-凝膠法(Sol-Gel)的影響-------25 1-2-3-3 pH值對溶膠-凝膠法的影響---------------------------------28 1-2-3-4 溶劑的比例對溶膠-凝膠法的影響-------------------------34 1-2-4溶膠-凝膠法製備有機/無機混成材料--------------------------37 1-2-5 織物機能化加工------------------------------------------------------42 1-2-5-1潑水加工-----------------------------------------------------------43 1-2-5-2潑水理論-----------------------------------------------------------44 1-2-5-3潑油加工-----------------------------------------------------------49 1-2-5-4幾丁聚醣抗菌加工------------------------------------------------51 1-3 研究動機---------------------------------------------------------------------52 1-4 基本原理--------------------------------------------------------------------53 1-4-1 氟碳聚合物反應機構--------------------------------------------------53 1-4-2氟碳聚合物及其混成材製備-----------------------------------------55 1-4-3 幾丁聚醣反應機構-----------------------------------------------------58 1-5 參考文獻---------------------------------------------------------------------61 第二章 氟碳聚合物/SiO2混成材之製備及其性質探討--------------65 2-1 前言--------------------------------------------------------------------------65 2-2實驗--------------------------------------------------------------------------66 2-2-1 材料和樣品的準備---------------------------------------------------66 2-2-2氟碳共聚合物及其混成材料之製備-------------------------------67 2-2-3分析與測試 ------------------------------------------------------------68 2-3 結果與討論-------------------------------------------------------------------69 2-3-1 FAP與FACP的分子量與元素分析-------------------------------69 2-3-2 FT-IR分析------------------------------------------------------------70 2-3-3 NMR分析---------------------------------------------------------------73 2-3-3-1 13C-NMR分析--------------------------------------------------73 2-3-3-2 29Si-NMR分析-----------------------------------------------75 2-3-4 TGA分析---------------------------------------------------------------77 2-3-5表面性質及孔洞分析------------------------------------------------80 2-4 結論----------------------------------------------------------------------------83 2-5 參考文獻------------------------------------------------------------------------84 第三章 氟碳聚合物/SiO2混成材以溶膠--凝膠法對棉織物行潑水及潑油加工研究 ---------------------------------------------86 3-1 前言------------------------------------------------------------------------------86 3-2實驗-----------------------------------------------------------------------------88 3-2-1 材料和樣品的準備--------------------------------------------------88 3-2-2 棉織物加工方式----------------------------------------------------89 3-2-3 各種材料薄膜的製造----------------------------------------------91 3-2-4 分析與測試-------------------------------------------------------92 3-3 結果與討論----------------------------------------------------------------93 3-3-1 加工布之FT-IR分析----------------------------------------------93 3-3-2 加工布之SEM分析------------------------------------------------95 3-3-3 加工布之物理性質分析-------------------------------------------97 3-3-4 AFM分析----------------------------------------------100 3-4 結論------------------------------------------------------------------------103 3-5 參考文獻-------------------------------------------------------------------104 第四章 Chitosan/SiO2混合材料之合成及性質-----------------------106 4-1 前言-------------------------------------------------------------------------106 4-2實驗--------------------------------------------------------------------------107 4-2-1 材料和樣品的準備-------------------------------------------------107 4-2-2 實驗方法-------------------------------------------------------------108 4-2-3 分析與檢測---------------------------------------------------------109 4-3 結果與討論----------------------------------------------------------------110 4-3-1 FT-IR圖譜分析-------------------------------------------------110 4-3-2 13C-NMR分析---------------------------------------------------112 4-3-3 29Si-NMR分析---------------------------------------------------114 4-3-4 SEM分析------------------------------------------------------------116 4-3-5 X-ray分析-----------------------------------------------------------118 4-3-6 EDS分析------------------------------------------------------------120 4-3-7 抗UV檢測----------------------------------------------------------122 4-3-8 力學性能檢測------------------------------------------------------124 4-3-9 熱性能測定---------------------------------------------------------126 4-4 結論-------------------------------------------------------------------------128 4-5 參考文獻-------------------------------------------------------------------129 第五章 總結論與未來研究方向----------------------------------------------131 附錄--------------------------------------------------------------------------------134 著述及論文----------------------------------------------------------------------134 其他著述--------------------------------------------------------------------135 作者簡介-----------------------------------------------------------------------138 授權書--------------------------------------------------------------------------139

    第一章參考文獻
    1.Schmidt, H., J.Non-Cryst. Soilds, Vol 73 (1985).
    2.Matsuura, Y.; Matsukawa, K., Polymer 43,1549-1553 (2002).
    3.Tamaki, R., Naka, K., and Chujo, Y., Polymer Bulletin, 39 ,303 (1997).
    4.Imai, Y. Advances in polymer science. 140,1 (1999).
    5.Cicillini, S.A.; Calefi, P.S.; Neri, C. R.; Nassar, E. J., and Serra, O.A., J. Non-Crystalline Solids, 247,114-122 (1999).
    6.Ebelmen, J. J. Ann., 57,331 (1846).
    7.Geffcken, W. and Berger, E. German Patent 736,411 (1939).
    8.Dislich H., Angewandt Chemie, 10 , 363(1971).
    9.Ray, R. Am. J. Ceram. Soc., 52, 344 (1969).
    10.Dislich H., Glastechn. Ber., 44,1 (1971).
    11.Levene, L. and Thomas, I. M. U.S. Patent 3,640,093 (1972).
    12.Wilkes G. L., Orlerand B. Huang H., Polym. Bul. (Berlin), 14,557 (1985).
    13.Saequsa T., Macromol J.. Sci., Chem. A, 28,817 (1991).
    14.Mackenzie J., Corriu, Leclercq R.J.P., D. Vioux, A. Pauthe, M. Phalippou, in: J.D. Ulrich( Eds.), D.R. Ultrastructure Processing of Advanced Ceramics, J. Wiley and Sons. 113 (1988).
    15.M. W. Ellsworth and B.M. Novak, J. Am. Chem. Soc., 113, 2756 (1991).
    16.Wei Y., R. Bakthavatchalam, Yang D. and Whitecar C.K., Polym. Prep., 32(3), 503 (1991).
    17.Wei Y., Yang D. and Tang L., J. Matr. Res., 8(5),1143 (1993).
    18.Wei Y. and Wei W., Am. Chem. Soc., “Hybrid Organic-Inorganic Composites” 125 (1995).
    19.Nakata S., Kawata M., Kakimoto M.-A. and Imaj Y., J. Polym. Sic., Part A : Polym. Chem., 31, 3425 (1993).
    20.Mark J. E. and Wen J., Macromol. Reports, A31,429 (1994).
    21.Novak B.M. and C. Davies, Polym. Prep., 32(3),512 (1991).
    22.Saegusa T., Pure and Appl. Chem., 67,1965 (1995).
    23.許應舉、王國瑞,高分子研討會:“SBS-SiO2溶膠-凝膠混成複合材料之合成與性質",P100-103,1998。
    24.許應舉、謝炯勳,高分子研討會:“PVA-SiO2溶膠-凝膠混成複合材料",P87-88,1999。
    25.Genevie`ve Cerveau, Robert J.P. Corriu. Coordination Chemistry Reviews. 178–180,1051–1071(1998).
    26.Chen W. C., Lee S. J., Lee L. H. J. Mater. Chem., 9. 2999-3003 (1999).
    27.Chen W. C. and Lee S. J., Polymer Journal, 32(1), 67-72 (2000).
    28.Chian C. L., Ma C. C., Journal of Polymer Degradation and Stability (2003).
    29.Chiang C. L., Chen-Chi MA, Wu D. L., H. C. Kuan, Journal of Applied Polymer Science, 41, 905-913 (2003).
    30.Yoldas, B. E., J. Mater. Sci., 14,1843 (1979).
    31.Nogami, M. and Moriya, Y., J. Non-Cryst. Solids, 37 (1980).
    32.Brinker, C.J. Scherer, G.W. Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, (1990).
    33.Aelion, R., Loebel, A. and Eirich, F., Am. Chem. Soc. J., 72,124 (1950).
    34.Mutter, C.; Bernards, T. N. M.; Peeters, M. P. J.; Lammers, J. H.; Bohmer, M. R. Thin Solid Films 35, 95,(1999).
    35.Iler, R. K. The chemistry of silica from "Sol-gel science: The physics and chemistry of sol-gel processing", (1st, Academic Press Wiley, New York, (1979).
    36.Brinker C. J., Scherer G. W., Sol-Gel-Science chap 3.
    37.Hajji P., David L., Gerard J. F., Pascault J. P., Vigier G., Journal of Polymer Science, Part B: Polymer physics, 37, 3172 (1999).
    38.Wilkes G.L., Orlerand B., Huang H., Polym. Bul. (Berlin), 14,557 (1985).
    39.Tamaki, R., Naka, K., and Chujo, Y., Polymer Bulletin, 39,303 (1997).
    40.Tamaki, R.; Horiguchi, T. and Chujo, Y. Bull. Chem. Soc. Jpn., 71,749 (1998).
    41.Tamaki, R. and Chujo, Y. J. Mater. Chem., 8,1113 (1998).
    42.Tamaki, R. and Chujo, Y. App;. Organometal. Chem., 12,755 (1998).
    43.Tamaki, R., Naka, K., and Chujo, Y., Polymer Journal, 30,60 (1998).
    44.Chujo, Y. et al., Makromol. Chem., Macromol. Symp., 42/43,303(1991).
    45.Chujo, Y., Ihara, E., Kure, S. and Saegusa, T., Macromolecules, 26,5681 (1993).
    46.Nell, J. L. W., Wilkes, G. L., and Mohanty, D. K., J. Appl. Polym.Sci., 40,1177 (1990).
    47.Cicillini, S. A., Calefi, P. S., Neri, C. R., Nassar, E. J., and Serra, O.A., J. Non-Crystalline Solids, 247,114 (1999).
    48.Landry, C. J. T., Coltrain, B. K. and Brady, B. K., Polymer, 33,1486 (1992).
    49.Mark, J. E. and Sun, C. C., Polym. Bull., 18,259 (1987).
    50.Huang, H. H. and Wilkes, G. L., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem), 28,244 (1987).
    51.Novak, B. M., Ellsworth, M., and Davis, C., Extended Abstracts, Tapan-U.S. Joint Seminar on Inorganic and Organometallic Polymers, 160,(1991).
    52.Mascia, L. and Kioul, A., Polymer, 36,3649(1995).
    53.Huang, Z. H., Qiu, K. Y., Dong, J. H., and Wei, Y., J. Appl. Polym.Sci., 66,853 (1997).
    54.Huang, Z. H., Qiu, K. Y., and Wei, Y., J. Polym. Sci., Part A: Polym.Chem., 35,2403 (1997).
    55.Tamaki, R., Naka, K., and Chujo, Y., Polymer Journal, 30,60 (1998).
    56.Bakeev, K. N., Shu, Y. M., MacKnight, W. J., Zezin, A. B., and Kabanov, V. A., Macromolecules, 27,300 (1994).
    57.Sakurai, K., Douglas, E., and MacKnight, W. J., Macromolecules, 25,4506(1992).
    58.Sakurai, K., Douglas, E., and MacKnight, W. J., Macromolecules, 26,208(1993).
    59.Bakeev, K. N., Chugunov, S. A., Teraoka, I., MacKnight W. J., Zezin, A. B., and Kabanov, V. A., Macromolecules, 27,3926(1994).
    60.Ng, C.-W. A., and MacKnight, W. J., Macromolecules, 27,3033 (1994).
    61.Ng, C.-W. A., Lindway, M. J., and MacKnight, W. J.,Macromolecules, 27,3027 (1994).
    62.Ng, C.-W. A., and MacKnight, W. J., Macromolecules, 29,2421 (1996)
    63.Backov, R., Bonnet, B., Jones, D. J., and Rozie're, J., Mater. Chem.,9, 1812 (1997).
    64.Chaneac, C., Tronc, E., and Jolivet, J. P., J. Mater. Chem., 6,1905 (1996).
    65.Clevenger, M. B., Zhao J., and McDevitt J. T., Chem. Mater., 8,2693 (1996).
    66.Fikushima Y., and Tani M., J. Chem. Soc., Chem. Commun., 241(1995).
    67.Krishnamoorti, R., Vaia, R. A., and Giannelis, E. P., Chem. Mater.,8 1728 (1996).
    68.Harmer, M. A., Farneth, W. E., Sun, Q., J. Am. Chem. Soc., 118,7708 (1996).
    69.Deng, Q., Hu, Y., Moore, R. B., McCormick, C. L., and Mauritz, K.A., Chem. Mater., 9,36 (1997).
    70.Shi, Y., and Seliskar, C. J., Chem. Mater., 9,821 (1997).
    71.Mascia, L. and Kioul, A., Polymer, 36,3649 (1995).
    72.Novak, B. M., Ellsworth, M., and Davis, C., Extended Abstracts,Tapan-U.S. Joint Seminar on Inorganic and Organometallic Polymers, 160 (1991).
    73.Tamaki, R. and Chujo, Y. Chem. Mater., 11 ,1719 (1999).
    74.Tamaki, R., Chujo, Y., Polym. Prepr. Jpn., 47,4227 (1998).
    75.Barthlott W. and C. NeinhuisPurity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202, 1 (1997).
    76.黃柏翰, 潑水性染料對PTT纖維的染色性質及機能性,逢甲大學碩士論文(2004)。
    第二章參考文獻
    1. Weng WH, Hui C, Tsai SP, Wu JC. J. Appl. Poly. Sci., 91(1), 532 (2003).
    2. Kojima Y, Matsuoka T, Takahashi H et al. J Appl Poly Sci., 51, 683 (1994).
    3. Sheu TS, Ou CJ, Hon LY, Chen DY. Proc.Natl. Sci., 24(4), 301 (2000).
    4. Liu YL, Hsu CY, Wei WL, Jeng RJ. Polymer, 44, 5159 (2003).
    5. Liu YL, Chiu YC, Wu CS. J. Appl. Poly. Sci., 87, 404 (2003).
    6. Yano S. Polymer, 35(25), 5565 (1994).
    7. Zhu Y, Sun DX. J Appl Poly Sci., 92, 2013 (2004).
    8. Novak BM. Adv Mater., 5(6), 422 (1993).
    9. Goto K. J Appl Phys., 37, 2274 (1998).
    10. Kador L, Fischer R, Haarer D et al. Adv. Mater., 5(4), 270 (1993).
    11. Wang B, Wilkes GL. J Macromol Sci Pure Appl Chem., A31(2), 249 (1994).
    12.Mizutani R, Oono Y, Matsuoka J, Nsu H, Kamiya K, J Mater Sci., 29, 5773 (1994).
    13. Chalapathi VV, Ramiah KV. Curr Sci., 16, 453 (1968).
    14.Changhai YL, Xuming X. Binding, Beijing, 23, 1 (2002).
    15. Zhang X, Takegoshi K, Hickichi K. Polymer, 33, 712 (1992).
    16. Bovey FA, High-resolution NMR of Macromolecules. New York: Academic Press (1972).
    17. Qin C, Priesm ATN. Belifore LA. Polym Commun., 31, 177 (1990).
    18. Miyoshi T, Takeqoshi K, Hikichi K. Polymer, 38, 2315 (1997).
    19. Mayhias L. J Solid State NMR of Polymers. New York: Plenum Press. (1988).
    20.Lee, G. L., Organic Silicon Macromolecule Chemistry, Beijing Science Publisher. 150 (1998).
    21. Ralph K. Iler, The Chemistry of Silica, John Wiley &Sons, Inc., 541 (1979).
    第三章參考文獻
    1. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).
    2. R.N. Wenzel, J. Phys. Colloid Chem. 53, 1466 (1949).
    3. A. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944).
    4. W. Barthlott, C. Neinhuis, Planta. 202, 1 (1997).
    5. W. Barthlott, C. Neinhuis, Biologie in unserer Zeit. 28(5), 314 (1998).
    6. Y. Tsuda, A. Iwamoto, Nall. Tech. Rep. 38, 108 (1992).
    7. K. Ogawa, M. Soga, Y. Takada, I. Nakayama, Jpn. J. Appl. Phys. 32, 614 (1993).
    8.G. Yamauchi, J. D.Miller, H. Saito, K. Takai, T. Ueda, H. Takazawa, H. Yamamoto, S. Nishi, Colloids Surf. 116, 125 (1996).
    9. T. Onda, S. Shibuichi, N. Staoh, K. Tsujii. Langmuir 12, 2125 (1996).
    10.K. Murai, Hyoumen-gijutsu, 47, 562 (1996).
    11. Y. Saiki, M. Nakao, M. Ono, Kougyou-zairyou, 44, 52 (1996).
    12. K. Tadanga, N. Katata, T. Minami, J. Am. Cerm. Soc. 80, 3213 (1997).
    13. K. Tadanga, N. Katata, T. Minami, J. Am. Cerm. Soc. 80, 1040 (1997).
    14.S. Shibuchi, T. Onda, N. Satoh, K. Tsujii, J. Jpn. Oil Chem. Soc. 46, 649 (1997).
    15.Y. Kowada, Y. Takeuchi, K. Tadanaga, T. Minami, in Proc. Annu. Meet. Ceram. Soc. Jpn., 53 (1997).
    16. K. Izumi, M. Murakami, T. Deguchi, A. Morita, N. Tohge and T. Minami, J. Am. Ceram. Soc. 72, 1465 (1989).
    17. K. Izumi, T. Hidetoshi, M. Murakami, T. Deguchi, A. Morita, J. Non-Crys. Sol. 121, 344 (1990).
    18. R. Nass, E. Arpace, W. Glaubitt, and H. Schmidt, J. Non-Cryst. Solids, 121(1-3), 370 (1990).
    19. B. Wang and G. L. Wilkes, J.Macromol. Sci. Pure Appl. Chem. A 31(2), 249 (1994).
    20. R. Mizutani, Y. Oono, J. Matsuoka, H. Nsu, and K. Kamiya, J. Mater. Sci. 29, 5773 (1994).
    21. V.V. Chalapathi , K.V. Ramiah. Curr Sci.16, 453 (1968).
    22. T. Textor, T. Bahners, E. Schollmeyer. Melliand Textiler, 10, E229 (1999).
    23. Lee G. L., Organic Silicon Macromolecule Chemistry, Science Publisher, Beijing, 150-151 (1998).
    第四章參考文獻
    1.Khaled F. El-tahlawy; Magda A. El-bendary; Adel G.Elhendawy; Samuel M. Hudson ., Carbohydrate Polymers, 60, 421-430 (2005).
    2.Chung, Y. S; Lee, K. K., Kim, J. W., Textile Research Journal, 68, 772-775, (1998)
    3.Badawy, M.E.I; Rabea E.I; Rogge T.M; Stevens C.V; Smagghe G; Steurbaut W; Hofte M., Biomacromolecules, 5, 589 (2004)
    4.Skjak-Braek G..; Anthonsen T.; Elsevier Applied Science, London, (1989).
    5.Lu S; Song X.; Cao D.; Chen Y.; Yao K.; J. Appl. Polym. Sci., 91, 3497 (2004).
    6.Sashiwa H.; Yamamori N.; Ichinose Y.; Sunamoto J.; Aibe S.; Macromol. Biosci.,; 3, 231 (2003)
    7.Hirano S.; Yamaguchi Y.; Kamiya M.; Macromol. Biosci., 3, 629 (2003)
    8.Zhou Y.; Yang Y.; Wang D.; Liu X.; Chem. Lett., 32, 682 (2003)
    9.Francis S.J.K.; Matthew H.W.T.; Biomaterials,; 21, 2589 (2002)
    10.Zeng X.; Ruckenstein E.; J. Membr. Sci., 148, 195 (1998)
    11.Qing Yang; Fengdong Dou; Borun Liang; Qing Shen; Carbohydrate Polymers, 59, 205-210 (2005)
    12.Atsushi Matsuda; Toshiyuki Ikoma; Hisatoshi Kobayashi; Junzo Tanaka; Materials Science and Engineering, 24, 723-728 (2004).
    13.Goissis G.; Junior E.M.; Marcantonio R.A.C.; Lai R.C.C.; Cancian D.C.J. (1998).
    De Caevallho W.M.; Biomaterials, 20, 27 (1999).
    14.Jegal J.; Lee K.H.; Journal of Applied Polymer Science, 72, 1755-1762 (1999).
    15.Shin H., Ueda M.; Sen-Igakkaishi, 55, 1-6 (1999).
    16.Wei Y.C.; Hudson S.M.; Mayer J.M.; Kaplan D.L.; J Polym Sci Part A: Polym. Chem., 30, 2187 (1992).
    17.Schmidt C.E.; Baier J.M.; Biomaterials, 21, 2215 (2000).
    18.Mi F.L.; Sung H.W.; Shyu S.S.; Su C.C.; Peng C.K.; Polymer, 44, 6521 (2003).
    19.Jin J.; Song M.; Hourston D.J.; Biomacromolecules, 2004; 5: 162.
    20.Kuboe Y.; Tonegawa H.; Ohkawa K.; Yamamoto H.; Biomacromolecules, 5, 348 (2004).
    21.Retuert J.; Nunez A.; Martinez F.; Macromol Rapid Commun., 18, 163 (1997).
    22.Park S.B.; You J.O.; Park H.Y; Hamm S.J.; Kim W.S.; Biomaterials, 22, 323 (2001).
    23.Suzuki T.; Mizushima Y.; Ferment J. Bioeng, 84,128 (1997).
    24.Tian D.; Dubois P.H; Jerome R.; J. Polym. Sci. Park A: Polym. Chem., 35, 2309 (1997).
    25.Garbassi F.; Balducci L.; Micropor. Mesopor. Mater.,; 47, 51-59 ( 2001).
    26.Lopez T.; Bosch M. F.; Tzompantzi R.; Gomez J.; Navarrete E.; Lopez-Salinas M.E.; Llanos, Appl. Catal., A: Gen. 197, 107 (2000).
    27.Sanchez C.; Ribot F.; Lebeau B.; J. Mater. Chem., 9, 35 (1999).
    28.Haas K.H., Adv. Eng. Mater., 2, 571 (2000).
    29.Bovey F.A., High-resolution NMR of macromolecules. New York: Academic Press. (1972).
    30.Tonelli A.E.;Schilling F.C.; Acc Chem. Res., 14, 233 (1981).

    無法下載圖示 全文公開日期 2012/01/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE