簡易檢索 / 詳目顯示

研究生: 謝嘉桐
Chia-Tung Hsieh
論文名稱: 寬鎖頻範圍之除二、除三、除四注入鎖定除頻器與六階LC共振腔注入鎖定除頻器之研究
Wide Locking Range Divide-by-2/3/4 Injection-Locked Frequency Divider and Injection-Locked Frequency Divider Using 6th-Order LC Resonator
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
莊敏宏
Miin-Horng Juang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 64
中文關鍵詞: 相位檢測器電荷泵環路濾波器壓控振盪器分頻器注入鎖定分頻器
外文關鍵詞: PFD, CP, LF, VCO, FD, ILFD
相關次數: 點閱:376下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鎖相迴路(PLL)在無線頻率收發器(RF)中是非常重要的,PLL的功能包括相位檢測器(PFD),電荷泵(CP),環路濾波器(LF),壓控振盪器(VCO)和除頻器(FD),為了追求低功耗、低相位雜訊,寬鎖頻範圍是除頻器中最重要的特性。 本文介紹了注入鎖定除頻器(ILFD)的研究。
首先,提出了一種超寬鎖頻範圍之CMOS除2注入鎖定除頻器(ILFD), 台積電製造的TSMC 0.18-μm CMOS ÷2 ILFD使用一對交叉耦合開關晶體管,直接雙注入MOSFET和RLC雙諧振諧振器,諧振器中包括含電阻的LC諧振器技術,用於降低諧振器的品質因數(Q),並獲得寬鎖頻範圍。 ÷2 ILFD內核的消耗功率為10.22 mW。
其次,介紹了使用TSMC 0.18-μm CMOS工藝的寬工作範圍並聯諧振除3注入鎖定除頻器(ILFD), ÷3 ILFD電路透過並聯諧振交叉耦合的n-core MOS LC-tank振盪器實現,可調MOSFET電阻用於調節振盪頻率,並擴大工作範圍,串聯兩個直接注入MOSFET作為倍頻器和動態線性混頻器來擴大鎖定範圍。 ÷3 ILFD內核的消耗功率為6.12 mW。
第三,研究了TSMC 0.18-μm CMOS工藝中4th/6th RLC諧振之除2/4注入鎖定除頻器(ILFD)的鎖定範圍屬性。 分析其注入功率在-20 dBm到10 dBm之間的特性比較。
最後,研究了採用TSMC 0.18-μm 1P6M CMOS技術製造的一個LC除2注入鎖定除頻器(ILFD)之特性。 輸出緩衝區和焊盤的總面積為1.196×1.1939 mm2 , 消耗功率為6.341 mW。


Phase-locked loop (PLL) is very notably important in radio-frequency (RF) transceivers. A PLL block includes the phase frequency detector (PFD), charge pump (CP), loop filter (LF), voltage controlledvoltage-controlled oscillator (VCO) and frequency divider (FD). Low power consumption, low phase noise, and a wide lock range, are the most important features of the FD. This thesis introduces the studiesy of the injection locking frequency divider (ILFD).
First, an ultra-wide-locking-range CMOS divide-by-2 injection-locked frequency dividers (ILFD) is presented. The fabricated 0.18-μm CMOS ÷2 ILFD uses a pair of cross-coupled switching transistors, direct-injection dual-injection MOSFETs and a RLC dual-resonance resonator. A technique with the degraded LC resonator, which by includes aing resistor in the resonator, is used to decrease the quality factor (Q) factor of the resonator and to obtain the wide-locking range. The consumed power of the ÷2 ILFD core is 10.22 mW.
Secondly, a wide- operation- range parallel resonant divide-by-3 injection-locked frequency divider (ILFD) using a standard 0.18-μm CMOS process is presented. The ÷3 ILFD circuit is realized with a parallel resonant cross-coupled n-core MOS LC-tank oscillator. A tunable MOSFET resistor is used to tune the oscillation frequency and widen the operation range. Two direct-injection MOSFETs in series are used as a double frequency and a dynamic linear mixer to widen the locking range. . The power consumption of the ILFD core is 6.12 mW.
Thirdly, we study the locking range property of the 4th/6th- order RLC-resonator divide-by-2/4 injection-locked frequency dividers (ILFDs) in the 0.18-μm CMOS process. The injection power is between -20 dBm to and 10 dBm, between which is one of the characteristics of in the comparison.
Finally, an LC tank divide-by-2 ILFD has been designed and fabricated in using the TSMC 0.18-μm 1P6M CMOS technology. The total die area, which includesing the output buffer and the pads, is 1.196×1.1939 mm2. The power consumption is 6.341 mW.

中文摘要 I Abstract III 致謝 V Table of ContentsTable of Contents VI List of FiguresList of Figures VIII List of TablesList of Tables XII Chapter 1 Introduction 1 1.1 Background 1 Chapter 2 Design of Injection Locked Frequency Divider 4 2.1 Principle of Injection Locked Frequency Divider 5 2.2 Locking Range 7 Chapter 3 Degradation of the Resonator Q-factor to Enhance the Locking Range of the Divide-by-2 Injection-Locked Frequency Divider 10 3.1 Introduction 10 3.2 Circuit Design 13 3.3 Measurement Results 15 Chapter 4 Wide-Band ÷3 LC-Tank Injection-Locked Frequency Divider 21 4.1 Introduction 21 4.2 Circuit Design 23 4.3 Measurement Results 27 Chapter 5 Locking Range Property of Triple/Dual-Resonance Divide-by-2/4 Injection-Locked Frequency Divider at High Injection Power 33 5.1 Introduction 33 5.2 Dual-Resonance (DR) Divide-by-2/4 ILFD 34 5.3 Measurement Results 35 5.4 Triple-Resonance (TR) Divide-by-2 ILFD 41 5.5 Measurement Results 42 Chapter 6 Injection-Locked Frequency Divider Implemented with 6th-OrderLC Resonators 47 6.1 Introduction 47 6.2 Circuit Design 49 6.3 Measurement Results 50 Chapter 7 Conclusions 56 References 58

[1] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[2] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[3] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[4] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[5] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[6] M. Tiebout, “A 480 uW 2 GHz ultra-low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[7] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[8] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[9] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[10] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[11] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[12] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[13] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[14] S. L. Jang, S. H. Huang, C. F. Lee, and M. H. Juang, “ LC-tank Colpitts injection-locked frequency divider with record locking range”, IEEE Microwave and Wireless Component Lett, vol. 18, pp. 560-562, 2008.
[15] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
[16] J. Jeong and Y. Kwon, “A fully integrated V-band PLL MMIC using 0.15um GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp.1042-1050, May. 2006.
[17] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeter-wave frequency synthesizer for automotive radars,” IEEE J. Solid-State Circuits, vol.44, no.8, pp.2100-2113, Aug. 2009.
[18] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, ”Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electronics, vol.E91-C,No.6,pp.956-962, Jun. 2008.
[19] S.-L. Jang, C.-C. Liu, and J.-F. Huang, ” Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. on Electron, vol.E93-C,No.1,pp.136-139, Jan. 2010.
[20] S.-L. Jang, H.-S. Chen, C.-C. Liu, and M.-H. Juang” A 0.35 μm CMOS divide-by-3 LC injection locked frequency divider using linear mixers,” Microw. Opt. Technol. Lett, pp.2740-2743, Dec., 2010.
[21] S.-L. Jang, and C.-W.: Chang,” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett, vol. 20, pp.229-231, April, 2010.
[22] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu,” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett, vol. 20, pp.390-392, July, 2010.
[23] C.-W. Chang, S.-L. Jang, and C.-W. Hsieh,” Wide-locking range ÷3 active-inductor injection-locked frequency divider using the push-push oscillator,” Microw. Opt. Technol. Lett, pp.2771-2773, Dec, 2011.
[24] S.-L. Jang, and C.-Y. Lin,” A wide-locking range Class-C injection-locked frequency divider,” Electron. Lett, vol. 50, 23, pp.1710-1712, 2014.
[25] S.-L. Jang, C.-Y. Lin, and M.-H. Juang,” Enhanced locking range technique for a divide-by-3 differential injection-locked Frequency divider,” Electron. Lett, vol. 51, 19, pp. 456 – 458, 2015.
[26] J.-W. Wu, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu, ” Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett, pp. 590-592, Nov., 2013.
[27] Y.-T. Chen, M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech, vol. 60, no. 1, pp. 160–67, 2012.
[28] P.-K. Tsai, C.-C. Liu, T.-H. Huang, "Wideband injection-locked divide-by-3 frequency divider design with regenerative second-harmonic feedback technique," 2012, EuMIC, pp. 293 - 296
[29] T.-Y. Chang, C.-S. Wang, and C.-K. Wang “A low power W-band PLL with 17-mW in 65-nm CMOS technology,” in ASSCC, 2011.
[30] P.-K. Tsai, C.-Y. Liu, T.-H. Huang, and J.-W. Wu, “K-band, low-power CMOS injection-locked divide-by-three circuit using shunt-peaking and current-bleeding techniques,” Microw. Opt. Technol. Lett, vol. 54, no. 3, pp. 577–579, Mar. 2012.
[31] S.-L. Jang, and C.-Y. Chuang, ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process, vol. 76, Issue 1, pp. 111-116, 2013.
[32] S.-L. Jang, and J.-H Hsieh, ” A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process, vol. 77, pp 593-598 2013.
[33] X. P. Yu, A. van Roermund, X. L. Yan, H. M. Cheema, and R. Mahmoudi,, " A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement," IEEE Microw. Wireless Compon. Lett, vol.19, no.9, pp.575-577, Sept. 2009.
[34] S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett, vol. 20, pp.229-231, April, 2010.
[35] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett, vol. 20, pp.390-392, July, 2010.
[36] S.-L. Jang, Y.-S. Chen, C.-W. Chang and C.-C. Liu,” injection-locked frequency dividing apparatus”, US patent # US008305116B2, 2012.
[37] C.-W. Chang, S.-L. Jang, and C.-W. Hsieh,” Wide-locking range ÷3 active-inductor injection-locked frequency divider using the push-push oscillator,” Microw. Opt. Technol. Lett, pp.2771-2773, Dec, 2011.
[38] Y.-T. Chen, M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage k-Band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech, vol. 60, no. 1, pp. 160–67, 2012.
[39] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
[40] S.-L. Jang and C.-Y. Chuang, ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process, vol. 76, Issue 1 (2013), pp. 111-116.
[41] S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett, vol. 20, pp.229-231, April, 2010.
[42] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett, vol. 20, pp.390-392, July, 2010.
[43] S.-L. Jang, Y.-S. Chen, C.-W. Chang and C.-C. Liu,” injection-locked frequency dividing apparatus”, US patent # US008305116B2, 2012.
[44] C.-W. Chang, S.-L. Jang, and C.-W. Hsieh,” Wide-locking range ÷3 active-inductor injection-locked frequency divider using the push-push oscillator,” Microw. Opt. Technol. Lett, pp.2771-2773, Dec, 2011.
[45] Y.-T. Chen, M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage k-Band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech, vol. 60, no. 1, pp. 160–67, 2012.
[46] C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shih, " Dual-resonance LC-tank frequency divider implemented with switched varactor bias,” IEEE Int. VLSI- DAT, 2011, pp.1-4.
[47] S.-L.Jang, Z.-H. Wu, C.-W.Hsue and H.-F.Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett, vol.55, 10, pp. 2333–2337, Oct. 2013.2009.
[48] S.-L. Jang, L.-Y. Huang, C.-W. Hsue,and J. F. Huang,"Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett, vol. 25, no. 3, pp. 193-195, March 2015.
[49] S.-L.Jang, ” Divide-by-3 injection-locked frequency dividers using dual-resonance resonator,”Analog Integr Circ Sig Process, vol. 85,no.2, pp 335-341, Nov.,2015.
[50] R. L. Bunch, and S. Raman, “Large-signal analysis of MOS varactors in CMOS - Gm LC VCOs” IEEE J. Solid-State Circuits, vol. 38, no.8, pp.1325-1332, Aug. 2003.
[51] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi , “Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion”, IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1011, August 2002.
[52] S.-L. Jang, S. Jain, J.-F. Huang, and C.-W. Hsue, ” DC-bias and oscillation-amplitude dependent frequency-tuning characteristics of varactor-switching dual-band CMOS VCOs,” Microw. Opt. Technol. Lett, vol. 55, 6, pp.1389-1393, June 2013.

無法下載圖示 全文公開日期 2022/08/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE