簡易檢索 / 詳目顯示

研究生: 蔡宜蓁
YI-CHEN TSAI
論文名稱: 具有蕭特基源極之奈米鰭片場效電晶體
Nano-scale FINFET with Schottky source
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 莊敏宏
Miin-Horng Juang
張勝良
Sheng-Lyang Jang
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 62
中文關鍵詞: 鰭片場效電晶體蕭特基源極功函數
外文關鍵詞: FINFET, Schottky source, Work function
相關次數: 點閱:272下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著產品需求的演變,元件不斷微縮,通道長度也隨之變小,短通道效應(SCE)引起元件的漏電流增加並使得導通(ION)與截止(IOff)的電流比降低。為了改善短通道效應,我們選用 FINFET 結構,其具有良好的通道控制力,而被廣泛應用。然而,傳統的 FINFET 伴隨著 DIBL 的問題出現,本論文採用具有固定能障之蕭特基源汲極 FINFET 去改善 DIBL 的效應。
    本文利用 Synopsys TCAD 模擬軟體去進行數據上的分析,並根據模擬的結果調整元件參數。結果顯示,在低操作電壓時,蕭特基源極搭配n+ 汲極之 FINFET因為沒有 DIBL 的問題,且由於電場變小,減少了帶到帶穿隧效應,所以具有最良好的特性。當鰭片高度為 30 nm,鰭片寬度為 5 nm,在汲極偏壓為 0.6 伏特以及閘極偏壓為 0 伏特時,其總漏電流約為 1.6 nA,此外,在汲極偏壓為 0.6 伏特以及閘極偏壓為 0.6 伏特的情況下,其次臨限擺幅(Subthreshold Swing , S.S.)為 81 mV/dec 而汲極電流(Id)為 39.5 μA,然對應的傳統 FINFET,其次臨限擺幅(Subthreshold Swing , S.S.)為 94 mV/dec 而汲極電流(Id)為 25.1 μA。
    此外,對具有蕭特基汲極之蕭特基源極 FINFET 而言,因為它比蕭特基源極搭配n+汲極FINFET 額外地在汲極區域產生電洞穿隧,所以會產生較大的漏電流,在汲極偏壓為 0.6 伏特以及閘極偏壓為 0.6 伏特的情況下,其次臨限擺幅為 95mV/dec 而汲極電流(ID)為 21.5 μA。


    As product demands evolve, components are continuously scaled down, resulting
    in a reduction in channel length. The short-channel effect (SCE) causes an increase in leakage current and a decrease in the ratio of on-current (ION) to off-current (IOFF) in the device.
    In order to improve the short-channel effect, we have chosen the FINFET structure,
    which has excellent channel control and is widely used. However, traditional FINFETs
    come with the issue of Drain Induced Barrier Lowering (DIBL). This paper adopts the
    approach of using a Schottky S/D FINFET with a fixed barrier to improve the DIBL
    effect.
    This thesis used Synopsys TCAD simulation software to analyze the data and adjust
    device parameters, based on the simulation results. The Schottky source with n
    + drain FINFET exhibits the best characteristics at low VD bias due to the absence of DIBL and reduced band-to-band tunneling effects due to the decreased electric field. With a fin height of 30 nm and a fin width of 5 nm, at a drain bias of 0.6 V and a gate bias of 0 V, the total leakage current is approximately 1.6 nA. Additionally, under a drain bias of 0.6 V and a gate bias of 0.6 V, the subthreshold swing (S.S.) is 81 mV/dec and the drain current (ID) is 39.5 μA for the Schottky source FINFET. In contrast, the corresponding values for the conventional FINFET are a subthreshold swing (S.S.) of 94 mV/dec and a drain current (ID) of 25.1 μA.
    Furthermore, for the Schottky S/D FINFET, an additional leakage path, compared
    to the Schottky source with n+ drain FINFET, is caused and thus a larger leakage current is induced. At a drain bias of 0.6 V and a gate bias of 0.6 V, it exhibits a subthreshold swing of 95 mV/dec and a drain current (ID) of 21.5 μA.

    摘要 I Abstract IV Acknowledgement V Contents VI List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Overview of conventional FINFET 2 1-2-1 Overview of Schottky source FINFET 3 1-2-2 Overview of Schottky S/D FINFET 6 1-3 Device physical mechanism 7 1-3-1 Short-channel effects 8 1-3-2 Drain-Induced Barrier Leakage 9 1-3-3 Gate-Induced Drain Leakage 10 1-3-4 Band to Band tunneling 10 Chapter 2 Device fabrication 11 2-1 Conventional FINFET fabrication 18 2-2 Schottky source with n^+drain FINFET fabrication 23 2-3 Schottky S/D FINFET fabrication 29 Chapter 3 Results and Discussion 30 3-1 Conventional FINFET 30 3-1-1 Data analysis of Conventional FINFET 33 3-2 Schottky source with n^+drain FINFET 34 3-2-1 Drain aligned within the spacer 36 3-2-2 Drain aligned outside the spacer 38 3-3 Lowering V_D bias 40 3-3-1 Comparison between Conventional FINFET and Schottky source with n^+drain FINFET 41 3-4 Change Schottky source work function with n^+drain FINFET 43 3-5 Change Schottky-S/D FINFET work function 44 3-5-1 Both sides have high work functions 44 3-5-2 Height and low work functions 47 3-5-3 Both sides have low work functions 49 Chapter 4 Conclusion 50 Reference 54

    [1] Xiaolei Yang, Yong Li, Xinyun Xie, Shuai Zhang, Zhaoxu Shen, Fei Zhou, Xin He, Jie Zhao, Gang Mao, Anni Wang, Jianhua Ju, " Analysis of short channel effects for 14nm and beyond Si-bulk FinFET," 2016: 2016 China Semiconductor Technology International Conference (CSTIC), pp. 1-3, doi: 10.1109/CSTIC.2016.7464044.
    [2] Tapas Dutta, Sudeb Dasgupta, " Scaling issues in nanoscale double gate FinFETs with source/drain underlap," 2009: 2009 4th International Conference on Computers and Devices for Communication (CODEC), INSPEC Accession Number: 11136776.
    [3] Chenming Hu, J. Bokor, J. Tsu-Jae King, E. Anderson, C. Kuo, K. Asano, H. Takeuchi, J. Kedzierski, J. Wen-Chin Lee, D. Hisamoto," FINFET-a self-aligned double-gate MOSFET scalable to 20 nm" 2000: IEEE Transactions on Electron Devices , vol:47, pp. 2320 - 2325, doi: 10.1109/16.887014.
    [4] Xuejue Huang, Wen-Chin Lee, Charles Kuo, D. Hisamoto, D. Leland Chang, J. Kedzierski, E. Anderson, H. Takeuchi, H. Yang-Kyu Choi, K. Asano, V. Subramanian, V. Tsu-Jae King, J. Bokor, J. Chenming Hu, " Sub 50-nm FinFET: PMOS," 1999: International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318) , pp. 67-70, doi: 10.1109/IEDM.1999.823848.
    [5] H.-S. Philip Wong, " Beyond the conventional transistor," 2005: Solid-State Electronics, vol:46, pp. 755-762, doi: 10.1016/j.sse.2004.10.014.
    [6] A. Afzalian, D. Lederer, C.-W Lee, R. Yan, W. Xiong, C. Rinn Cleavelin, J.-P. Colinge, " 2008: Multigate SOI MOSFETs: Accumulation-mode vs. enhancement-mode," 2008 IEEE Silicon Nanoelectronics Workshop, pp. 1-2, doi: 10.1109/SNW.2008.5418482.
    [7] V. Trivedi, " Nanoscale FinFETs with gate-source/drain underlap," 2005: IEEE Transactions on Electron Devices, vol:52, no.1, pp. 56-62, doi: 10.1109/TED.2004.841333.
    [8] A. Kaneko, A. Yagishita, K. Yahashi, T. Kubota, M. Omura, K. Matsuo, I. Mizushima, K. Okano, H. Kawasaki, T. Izumida, T. Kanemura, N. Aoki, A. Kinoshita, J. Koga, S. Inaba, K. Ishimaru, Y. Toyoshima, H. Ishiuchi, K. Suguro, K. Eguchi, Y. Tsunashima," High-Performance FinFET with Dopant-Segregated Schottky Source/Drain" 2006: 2006 International Electron Devices Meeting, 1991: IEEE, pp.1-4, doi: 10.1109/IEDM.2006.346926.
    [9] Y.-K. Choi et al., "Sub-20nm CMOS FinFET technologies", IEDM Tech. Dig., pp. 421-424, 2001.
    [10] J. Kedzierski, J. Meikei Ieong, E. Nowak, T.S. Kanarsky, T.S. Ying Zhang, R. Roy, D. Boyd, D. Fried, H.-S.P. Wong, " Extension and source/drain design for high-performance finFET devices," 2003: IEEE Transactions on Electron Devices , Vol: 50, Issue: 4, pp. 952-958, 2021, doi: 10.1109/TED.2003.811412.
    [11] L. Chang, M. Leong, M. Yang, L. Chang, M. Leong, M. Yang, " CMOS Circuit Performance Enhancement by Surface Orientation Optimization," 2004: IEEE Transactions on Electron Devices, Vol: 51, Issue: 10, pp. 1621-1627, doi: 10.1109/TED.2004.834912.
    [12] A. Kaneko, A. Yagishita, K. Yahashi, T. Kubota, M. Omura, K. Matsuo, I. Mizushima, K. Okano, H. Kawasaki, T. Izumida, T. Kanemura, N. Aoki, A. Kinoshita, J. Koga, S. Inaba, K. Ishimaru, Y. Toyoshima, H. Ishiuchi, K. Suguro, K. Eguchi, Y. Tsunashima, "High-Performance FinFET with Dopant-Segregated Schottky Source/Drain,"2006: 2006 International Electron Devices Meeting, pp. 1-4, doi: 10.1109/IEDM.2006.346926.
    [13] Javaneh Mohseni, James D. Meindl, "Scaling Limits of Rectangular and Trapezoidal Channel FinFETs,"2013: 2013 IEEE Green Technologies Conference (GreenTech), pp. 204-210, doi: 10.1109/GreenTech.2013.38.
    [14] D.S. Havaldar, G. Katti, N. DasGupta, A. DasGupta, "Subthreshold current model of FinFETs based on analytical solution of 3-D Poisson's equation,"2006: IEEE Transactions on Electron Devices, vol. 53, no. 4, pp. 737-742, doi: 10.1109/TED.2006.870874.
    [15] Ping Chin Yeh, J.G. Fossum, "Physical subthreshold MOSFET modeling applied to viable design of deep-submicrometer fully depleted SOI low-voltage CMOS technology,"1995: IEEE Transactions on Electron Devices, vol: 42, Issue: 9, pp. 1605-1613, doi: 10.1109/16.405274.
    [16] G. Pei, J. Kedzierski, P. Oldiges, M. Ieong, E.C.-C. Kan, "FinFET design considerations based on 3-D simulation and analytical modeling, "2002: IEEE Transactions on Electron Devices, vol. 49, no. 8, pp. 1411-1419, doi:
    10.1109/TED.2002.801263.
    [17] T.B. Hook, J.S. Brown, M. Breitwisch, D. Hoyniak, R. Mann, " High-performance logic and high-gain analog CMOS transistors formed by a shadow-mask technique with a single implant step,"2002: IEEE Transactions on Electron Devices, Vol: 49, Issue: 9, pp. 1623-1627, doi: 10.1109/TED.2002.802623.
    [18] David Burnett, Sanjay Parihar, Hema Ramamurthy, Sriram Balasubramanian, "
    FinFET SRAM design challenges,"2014: 2014 IEEE International Conference on IC Design & Technology, doi: 10.1109/ICICDT.2014.6838606.
    [19] Anterpreet Gill, Charu Madhu, Pardeep Kaur, " Investigation of short channel effects in Bulk MOSFET and SOI FinFET at 20nm node technology,"2015: 2015 Annual IEEE India Conference (INDICON), pp. 1-4, doi: 10.1109/INDICON.2015.7443263.
    [20] J.A. Hutchby, G.I. Bourianoff, V.V. Zhirnov, J.E. Brewer, " Extending the road beyond CMOS,"2002: IEEE Circuits and Devices Magazine, Vol: 18, Issue: 2, pp. 28-41, doi: 10.1109/101.994856.
    [21] A. Chin;S.R. McAlister, " The power of functional scaling: beyond the power consumption challenge and the scaling roadmap,"2005: IEEE Circuits and Devices Magazine, Vol: 21, Issue: 1, pp. 27-35, doi: 10.1109/MCD.2005.1388766.
    [22] Ali Khakifirooz, Dimitri A. Antoniadis, " MOSFET Performance Scaling—Part I: Historical Trends,"2008: IEEE Transactions on Electron Devices,vol. 55, no. 6, pp. 1391-1400, doi: 10.1109/TED.2008.921017.
    [23] Leland Chang, Yang-Kyu Choi, Daewon Ha, P. Ranade, P. Shiying Xiong, J. Bokor, J. Chenming Hu, J. Tsu-Jae King, " Extremely scaled silicon nano-CMOS devices,"2003: Extremely scaled silicon nano-CMOS devices, Vol: 91, Issue: 11, pp. 1860-1873, doi:10.1109/JPROC.2003.818336.
    [24] A. Chaudhry, M.J. Kumar, " Controlling Short-Channel Effects in Deep-Submicron SOI MOSFETs for Improved Reliability: A Review,"2004: IEEE Transactions on Device and Materials Reliability, Vol: 4, Issue: 1, pp. 99-109, doi:
    10.1109/TDMR.2004.824359.
    [25] Qian Xie, Jun Xu, Yuan Taur, " Review and Critique of Analytic Models of MOSFET Short-Channel Effects in Subthreshold,"2012: IEEE Transactions on Electron Devices, Vol: 59, Issue: 6, pp. 1569-1579, doi: 10.1109/TED.2012.2191556.
    [26] Anu Tonk, Jamia Millia Islamia, New Delhi, "Short Channel Effects in Conventional MOSFETs and their Suppression," 2016: International Journal of Engineering Research and General Science Vol: 4, Issue: 3, May-June, 2016
    ISSN 2091-2730,
    [27] M. V. Dunga, A. Kumar, and V. R. Rao, "Analysis of Floating Body Effects in
    Thin Film SOI MOSFETs Using the GIDL Current Technique,"2001: Proceedings of the 2001 8th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2001 (Cat. No.01TH8548), pp. 254-257, doi: 10.1109/IPFA.2001.941497.

    QR CODE