簡易檢索 / 詳目顯示

研究生: 温元慧
Yuan-Hui Wen
論文名稱: 設計與分析具有遠端互傳功能之混合式被動光網路
Design and Analyses of Hybrid Passive Optical Networks with Remote-Unit Interconnection
指導教授: 李三良
San-Liang Lee
口試委員: 馮國璋
Kuo-Chang Feng
王井煦
Ching-shen Wang
廖顯奎
Shien-Kuei Liaw
李三良
San-Liang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 84
中文關鍵詞: 波導光柵路由器遠端單元相互通訊5G行動網路混合式被動光網路
外文關鍵詞: Wavelength Grating Router, Remote Unit Interconnection, 5G Network, Hybrid PONs
相關次數: 點閱:191下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一基於5G行動網路架構的混合式被動光網路(Hybrid PON)且具有遠端單位相互通訊(Remote Unit Interconnection)之功能。 此架構利用了波導光柵路由器(Wavelength Grating Router)的波長路由以及其週期性的自由光譜範圍(Free Spectrum Range)特性,在一架構下含蓋了多種工作模式,成功地將分時多工、分波多工以及分時分波多工被動光網路架構整合在一起,此外,透過回授路由埠,提供多樣通訊服務的同時也實現了遠端單元間通訊的功能,所連接之遠端單元可以相互通訊且能滿足低時延的應用情境需求,本文提出的網路架構概念係以能再既有被動光網路進行整合出發,以達現有光分配線網路(Optical Distribution Network)能有效再利用,預期可減少重新建置5G行動網路時所花費的成本以及時間。
    模擬實驗結果顯示,在設計好的波長配置下,本論文提出的混合式被動光網路,上行、下行以及遠端單元間相互傳輸,再採前向錯誤更正(Forward Error Correction)的傳輸誤碼率需求下,皆可成功傳輸25Gb/s的NRZ訊號,並透過功率的預算,在不考慮系統餘裕下,模擬出最長的光纖總長度為40公里,驗證了此網路架構的可行性。


    This research proposes a hybrid passive optical network (PON) system with remote unit (RU) inter-connection function based on 5G mobile networks. We utilize the wavelength routing and cyclic Free Spectrum Range (FSR) characteristics of the wavelength grating routing (WGR) to combine the time division multiplexing (TDM), the wavelength division multiplexing (WDM) and the time wavelength division multiplexing (TWDM) passive optical networks (PONs). With the design of the feedback ports, it also implements the RU inter-connection for the demand of the low latency usage scenario in 5G applications. The concept of the proposed architecture is to combine the existing PON system for 5G mobile network. Instead of constructing a new network, this architecture can reduce the cost and installation time.
    The simulation results show that the proposed system can transmit 25Gb/s NRZ signal for downstream, upstream and RU inter-connection by wavelength allocation, and the bit error rate (BER) performance can meet the requirement of forward error correction (FEC), verifying the feasibility of the architecture. Finally, according to simulation results and the estimated power budgets, without considering system margin, the total fiber length is 40 kilometers.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 導論 1 1.1 前言 1 1.2 5G行動網路發展現況與挑戰 2 1.3 被動光網路發展演進 4 1.4 研究動機 6 1.5 論文架構 7 第二章 傳輸網路架構介紹 8 2.1 前言 8 2.2 分時多工(TDM) 9 2.3 分波多工(WDM) 10 2.4 分時分波多工(TWDM) 11 2.5 混合PON接取網路 13 第三章 具有遠端互傳之HPON架構 14 3.1 前言 14 3.2 關鍵元件功能介紹 14 3.2.1 波導光柵路由器(Waveguide Grating Router) 14 3.2.2 非零色散位移光纖(NZDSF) 16 3.3 Hybrid-PON架構設計 17 3.3.1 分時分波多工(TWDM) 20 3.3.2 分波多工(WDM) 23 3.3.3 分時多工(TDM) 25 第四章 功率分析及重要元件參數介紹 27 4.1 前言 27 4.2 各種HPON架構之光功率預算分析 27 4.3 重要元件參數介紹 38 4.3.1 波導光柵路由器(Waveguide Grating Router) 38 4.3.2 多工器/解多工器(Multiplexer/Demultiplexer) 39 4.3.3 雙工器(Diplexer) 45 4.3.4 光接收器(Optical Receiver) 47 第五章 模擬結果驗證 49 5.1 前言 49 5.2 系統架構之模擬結果 49 5.2.1 基於HPON之傳輸網路架構及模擬結果 49 5.2.2 RU互通架構之數據模擬結果 64 第六章 結論 76 6.1 研究成果討論 76 6.2 未來研究方向 76 參考文獻 79

    參考文獻
    [1] J. A. D. P. Rosado, R. Raulefs, J. A. L. Salcedo, and G. S. Granados,“Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G”, IEEE Commun. Surveys and Tutorials, vol. 20, no. 2, second quarter 2018.
    [2] Minimum requirements related to technical performance for IMT-2020 radio interface(s), ITU-R M.2410-0, Nov. 2017.
    [3] C.-Y. Chang, R. Schiavi, N. Nikaein, T. Spyropoulos, C. Bonnet, “Impact of packetization and functional split on C-RAN fronthaul performance,” in Proceedings of ICC 2016, May 2016.
    [4] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network (C-RAN): a primer,” IEEE Network, vol. 29, pp. 35–41, Jan. 2015.
    [5] M. Shafi, A. F. Molish, P. J. Smith, T. Haustein, P. Zh, P. D. Silva, F. Tufvesson, A. Benjebbour, G. Wunder,“5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice”, IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201-1221, Jun. 2017.
    [6] “Small Cell Virtualization: Functionnal Splits and Use cases” Small Cell Forum release 6, 2016
    [7] 5G wireless fronthaul requirements in a passive optical network context, ITU-T Series G Supplement 66, Oct. 2018.
    [8] J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, “Next-generation PON—Part I: Technology roadmap and general requirements,” IEEE Commun. Mag., vol. 47, no. 11, pp. 43–49, Nov. 2009.
    [9] ITU-T SG15 G.989.2, 40-Gigabit-capable passive optical networks (NGPON2): Physical media dependent (PMD) layer specification, Feb. 2016. [Online]. Available: http://handle.itu.int/11.1002/1000/12097

    [10] ITU-T Rec. G.984 series, “Gigabit-Capable Passive Optical Networks (G-PON).”
    [11] H. Khalili, P. S. Khodashenas, D. Rincon, S. Siddiqui, J. R. Piney, and S. Sallent,“Design Considerations for an Energy-Aware SDN-Based Architecture in 5G EPON Nodes”, Int. Conf. on Trans. Opt. Netw. (ICTON), Jul. 2018, pp. 1-4.
    [12] G. Kramer, B. Mukherjee, G. Pesavento, “IPACT a dynamic protocol for an ethernet PON (EPON),” IEEE Commun. Mag., vol. 40, no. 2, pp. 74–80, Feb. 2002. doi: 10.1109/35.983911.
    [13] PON transmission technologies above 10 Gb/s per wavelength, [Online]. Available: https://www.itu.int/rec/T-REC-G.Sup64/en
    [14] B. Skubic, J. Chen, J. Ahmed, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Commun. Mag., vol. 47, no. 3, pp. 40–48, Mar. 2009. doi: 10.1109/MCOM.2009.4804388.
    [15] IEEE P802.3caTM/D1.0, “Draft Standard for Ethernet Amendment: Physical Layer Specifications and Management Parameters for 25 Gb/s, 50 Gb/s, and 100 Gb/s Passive Optical Networks,” Mar. 2018.
    [16] J. S. Wey, “The outlook for PON standardization: A Tutorial,” invited paper, OFC 2019 Special Issue, J. of Lightwave Technol. 38(1), 31-42. (Nov. 1, 2019).
    [17] RAN Rel-16 progress and Rel-17 potential work areas, Jul. 2019, [Online]. Available: https://www.3gpp.org/news-events/2058-ran-rel-16-progress-and-rel-17-potential-work-areas
    [18] Y. Mao, C. You, J. Zhang, K. Huang, K. B. Letaief,“A Survey on Mobile Edge Computing: The Communication Perspective”, IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, fourth quarter 2018.
    [19] 郭姿郁,「50Gb/s 高速單模光纖訊號傳輸搭配混合式被動光網路設計」,國立台灣科技大學碩士論文,2018
    [20] E. Harstead, D. V. Veen, V. Houtsma, P. Dom,“Technology Roadmap for Time-Division Multiplexed Passive Optical Networks (TDM PONs)”, J. Lightw. Technol., vol. 37, no. 2, pp. 657-664, Jan. 2019.
    [21] K. Sone, G. Nakagawa, Y. Hirose, T. H Hoshida,“Demonstration of Simultaneous Multiple ONUs Activation in WDM-PON System for 5G Fronthaul”, in Proc. Opt. Fiber Commun. Conf. Exhibit. (OFC), Mar. 2018, pp. 1-3.
    [22] D. Zhang, D. Zhe, M. Jiang, J. Zhang,“High speed WDM-PON technology for 5G fronthaul network”, Asia Commun. and Photonics Conf. (ACP), Oct. 2018, pp. 1-3.
    [23] 40-Gigabit-capable passive optical networks (NG-PON2): General requirements, ITU-T G.989.1, Mar. 2013.
    [24] K. Kim, K. -H. Doo, H. H. Lee, S. Kim, H. Park, J. -Y. Oh, H. S. Chung,“High Speed and Low Latency Passive Optical Network for 5G Wireless Systems”, J. Lightw. Technol., vol. 37, no. 12, pp. 2873-2882, Jun. 2019.
    [25] E. Wong, K. -L. Lee, A. Nirmalathas,“Experimental study on extended reach TDM-, Hybrid-, and WDM-PON configurations based on central office located raman pumps,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS’09. IEEE, 2009, pp. 553-554.
    [26] S. Pitris, G. Dabos, C. Mitsolidou, T. Alexoudi, P. D. Heyn, J. V. Campenhout, R. Broeke, G. T. Kanellos and N. Pleros, “Silicon photonic 8 × 8 cyclic Arrayed Waveguide Grating Router for O-band on-chip communication,” Optics Express, Vol. 26, no. 5, pp. 6276-6284, 2018.

    [27] https://www.corning.com/media/worldwide/coc/documents/Fiber/LEAF%20optical%20fiber.pdf.
    [28] http://www.ieee802.org/3/ca/public/meeting_archive/2017/09/liu_3ca_2a_0917.pdf .
    [29] ITU-T, “Transport network support of IMT-2020/5G,” Int. Telecommun. Union, Geneva, Switzerland, Tech. Rep. GSTR-TN5G, 2018.
    [30] G. de Valicourt, C. M. Chang, S. Chandrasekhar, Y. K. Chen, A. Maho, R. Brenot and P. Dong,“10-40 Gbit/s Hybrid III-V/Si wavelength-tunable transmitter for short- and long-reach communications”, European Conference and Exhibition on Optical Communications, 2016.
    [31] 馮國璋,「基於混合式被動光網路系統在智慧城市中之高效益行動傳輸網路架構」,國立台灣科技大學博士論文,2019
    [32] T. Tashiro, S. Kuwano, T. Kawamura, N. Tanaka, S. Shigematsu, “A novel DBA scheme for TDM-PON based mobile fronthaul,” in Proc. OFC 2014, San Francisco, CA, 2014, paper Tu3F.3
    [33] D. Zhang, D. Zhe, M. Jiang, J. Zhang,“High speed WDM-PON technology for 5G fronthaul network,” Asia Communications and Photonics Conference, 2018.
    [34] B. Mukherjee, I. Tomkos, M. Tornatore, P. Winzer, Y. Zhao,“Space Optical Links for Communication Networks,” September 2020, [Online], Available: https://doi.org/10.1007/978-3-030-16250-4_34

    QR CODE