簡易檢索 / 詳目顯示

研究生: 張立翔
Li-Hsiang Chang
論文名稱: 濺鍍法製備鉬鎳雙金屬薄膜應用於高效析氫反應與鹼性交換膜水電解
Bimetallic Molybdenum-Nickel Thin Film Fabricated by a Sputtering Technique for Highly Efficient Hydrogen Evolution Reaction and Alkaline Exchange Membrane Water Electrolysis
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 郭東昊
Dong-Hau Kuo
柯文政
Wen-Cheng Ke
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 136
中文關鍵詞: 磁控射頻濺鍍整體水電解析氫反應鉬鎳合金層狀雙金屬氫氧化物
外文關鍵詞: RF sputtering, Overall water splitting, Hydrogen evolution reaction, Mo-Ni alloy, Layered double hydroxide
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究透過磁控射頻濺鍍及電化學沉積技術,在鎳泡棉上成功製備出在鹼性溶液下具有優異 HER 表現之陰極,以及具有雙層結構 OER 表現之陽極。實驗中,首先濺鍍鉬鎳雙金屬薄膜在鎳泡棉上,並透過調整鉬鎳靶材之莫耳比例、濺鍍功率以及沉積時間來找到最佳參數,以獲得最佳陰極材料 MN6-90。接著,藉由電化學沉積技術將NiFe 雙金屬氫氧化物(NiFe-LDH)沉積到 MN6-90 濺鍍薄膜上,並透過調整電化學沉積之電解液濃度、電化學沉積電壓以及時間,篩選出最佳的參數,以得到雙層結構之陽極材料,最後再進行全電池組裝及測試。根據 XRD 與 TEM 結果顯示,單層 MN6-90 薄膜之結構為立方體 Ni,而雙層MN6-90/NiFe LDH-3c-5 薄膜則透過 Raman 光譜分析確認其外層結構為 NiFe-LDH。透過 SEM 觀察單層 MN6-90 薄膜之表面形貌可知其為微粒狀(Granular),而雙層MN6-90/NiFe LDH-3c-5 薄膜之表面形貌為奈米片狀(Nanosheet)。電化學量測結果顯示,在 1 M KOH 的氬氣環境下,單層 MN6-90 薄膜經 LSV 量測析氫反應在 10 mA/cm2 與 100 mA/cm2 電流密度時,過電位僅為 38 mV 與 140 mV,Tafel 斜率值為 49 mV/dec。而雙層 MN6-90/NiFe LDH-3c-5 薄膜經 LSV 量測析氧反應在 10 mA/cm2 與 100 mA/cm2 電流密度時,過電位為 214 mV 與 257 mV,Tafel 斜率值為 43 mV/dec。因此,我們將具有優異 HER 與 OER 性能之單層 MN6-90 薄膜與雙層MN6-90/NiFe LDH-3c-5 薄膜分別作為陰極與陽極,電解液為 1 M KOH,組裝成簡易電解槽。經量測整體水電解性能後,在 10 mA/cm2、100 mA/cm2 與 500 mA/cm2 電流密度時,其電池電壓僅需 1.47 V、1.65 V 與 1.93 V,其性能遠優於貴金屬電解槽,而透過長時間穩定性測試,結果也顯示我們所製備的薄膜具有優異的穩定性。最後,我們將電極尺寸由 1x1 cm2 放大為 4x4 cm2,組裝成鹼性交換膜電池堆。根據電化學量測結果顯示,在 1 M KOH 的環境下,MN6-90/NiFe LDH-3c-5(+)∥MN6-90(-)電池堆在 10 mA/cm2、100 mA/cm2與 250 mA/cm2 電流密度時,其電池電壓僅需 1.58 V、1.78 V 與 1.91 V。在一般商用電解液濃度 7 M KOH 時,在 10 mA/cm2、100 mA/cm2 與 250 mA/cm2 電流密度時,其電池電壓僅需 1.54 V、1.71 V 與 1.85 V。


This study successfully prepared a cathode with excellent HER performance in an alkaline solution and an anode with double-layer structure OER performance on nickel foam by magnetron radio frequency sputtering and electrodeposition techniques. In the experiment, the molybdenum-nickel bimetallic film was first sputtered on the nickel foam, and the optimal parameters were found by adjusting the molar ratio of the molybdenum-nickel target, sputtering power, and deposition time to obtain the best cathode material MN6-90. To obtain the anode material of the double-layer structure, nickel-iron layered double hydroxide (NiFe-LDH) was deposited on the MN6-90 sputtered film by electrodeposition technique, and the optimal parameters were screened out by adjusting the electrolyte concentration, voltage, and time of electrodeposition. Finally, carry out the full cell assembly and test. According to the results of XRD and TEM, the structure of the single-layer MN6-90 thin film is cubic Ni, while the structure of the MN6-90/NiFe LDH-3c-5 thin film was confirmed to be NiFe-LDH by Raman analysis. Observing the surface morphology of MN6-90 thin film through SEM shows that it is granular, while the surface morphology of MN6-90/NiFe LDH-3c-5 thin film is nanosheet. Electrochemical measurement results show that our MN6-90 thin film had a promising HER performance in alkaline solutions. The MN6-90 thin film had low overpotentials of 38 mV and 140 mV to reach the current density of 10 mA/cm2 and 100 mA/cm2 , respectively. The Tafel slope value is 49 mV/dec. The MN6-90/NiFe LDH-3c-5 film also had good OER overpotentials of 214 mV and 257 mV to reach the current density of 10 mA/cm2 and 100 mA/cm2 , respectively. The Tafel slope value is 43 mV/dec. Therefore, we used the single-layer MN6-90 thin film with excellent HER performance and the double-layer MN6-90/NiFe LDH-3c-5 film with excellent OER performance as the cathode and the anode, respectively. The electrolyte was 1 M KOH and assembled into a simple electrolyzer. After measuring the overall water splitting, the cell voltage only needs 1.47 V, 1.65 V, and 1.93 V to reach the current density of 10, 100, and 500 mA/cm2 , respectively. Our performance is far better than the noble metal electrolyzer. The long-term stability test results showed that our electrolyzer has excellent stability. Finally, we scaled the material size from 1x1 cm2 to 4x4 cm2 and assembled it into an alkaline exchange membrane water electrolysis stack cell of MN6-90/NiFe LDH-3c-5(+) ∥MN6-90(-). According to the electrochemical measurement results, the cell voltage in the 1 M KOH only needs 1.58 V, 1.78 V, and 1.91 V to reach the current density of 10, 100, and 250 mA/cm2 , respectively. When using a general commercial electrolyte with a concentration of 7 M KOH, the cell voltage only needs 1.54 V, 1.71 V, and 1.85 V to reach the current density of 10, 100, and 250 mA/cm2 , respectively.

目錄 中文摘要................................................................................................................................I ABSTRACT ........................................................................................................................III 誌謝...................................................................................................................................... V 圖目錄.................................................................................................................................XI 表目錄.............................................................................................................................XVII 第一章、緒論....................................................................................................................... 1 1.1 前言........................................................................................................................ 1 1.2 研究動機與目的.................................................................................................... 2 第二章、文獻回顧與原理................................................................................................... 3 2.1 水電解的電化學原理與機制................................................................................ 3 2.1.1 鹼性溶液的水電解反應機制..................................................................... 3 2.1.2 鹼性溶液的析氫反應(HER)機制......................................................... 4 2.1.3 鹼性溶液的析氧反應(OER)機制......................................................... 4 2.2 評估鹼性環境電催化劑性能的參數.................................................................... 5 2.2.1 過電位(Overpotential, η) ............................................................................ 5 2.2.2 Tafel 斜率(Tafel slope)................................................................................. 5 2.2.3 電化學阻抗分析(Electrochemical Impedance Spectroscopy, EIS)............ 6 2.2.4 電化學表面積(Electrochemical surface area, ECSA)................................ 6 2.2.5 穩定性(Stability)......................................................................................... 6 2.2.6 法拉第效率(Faradaic efficiency, FE) ......................................................... 7 2.3 鎳基合金................................................................................................................ 7 2.4 層狀雙金屬氫氧化物(Layered double hydroxides, LDHs)................................ 12 2.4.1 奈米結構................................................................................................... 17 2.4.2 陰離子交換............................................................................................... 19 VII 2.4.3 陽離子空位............................................................................................... 22 第三章、實驗方法與步驟................................................................................................. 24 3.1 實驗材料與規格.................................................................................................. 24 3.2 實驗設備.............................................................................................................. 25 3.2.1 烘箱........................................................................................................... 25 3.2.2 分析電子天平........................................................................................... 25 3.2.3 超音波震盪機........................................................................................... 25 3.2.4 球磨機....................................................................................................... 25 3.2.5 真空熱壓機............................................................................................... 26 3.2.6 射頻磁控濺鍍系統................................................................................... 26 3.3 實驗步驟.............................................................................................................. 27 3.3.1 基板裁切與清洗....................................................................................... 27 3.3.2 靶材粉末之製備與熱壓........................................................................... 28 3.3.3 薄膜濺鍍................................................................................................... 28 3.3.4 電化學沉積製備薄膜............................................................................... 29 3.3.5 鹼性交換膜電池堆(Stack Cell)組裝........................................................ 32 3.3.6 薄膜特性量測與表面結構分析............................................................... 32 3.4 分析儀器介紹...................................................................................................... 33 3.4.1 雙通道恆電位/電流/交流阻抗儀............................................................. 33 3.4.2 高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM).......................................................................................... 34 3.4.3 場發射穿透式電子顯微鏡(Field Emission Gun Transmission Electron Microscopy, FE-TEM)......................................................................................... 35 3.4.4 高功率 X 光繞射儀(High Power X-Ray Diffractometer, XRD).............. 35 3.4.5 X 射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) ............. 36 3.4.6 顯微拉曼光譜儀(Micro-Raman Spectrometer)........................................ 36 VIII 第四章、結果與討論......................................................................................................... 37 4.1 不同鎳含量對所得 MNx (x= 2、4、6、8)薄膜之分析探討............................ 37 4.1.1 不同鎳含量對所得 MNx (x= 2、4、6、8)薄膜於析氫反應(HER)之 LSV 量測及其相對應的 Tafel 斜率........................................................................... 37 4.1.2 不同鎳含量對所得 MNx (x= 2、4、6、8)薄膜之 EIS 與 CV 量測 ..... 40 4.1.3 不同鎳含量對所得 MNx (x= 2、4、6、8)薄膜之 XRD 分析 .............. 44 4.1.4 不同鎳含量對所得 MNx (x= 2、4、6、8)薄膜之 SEM 及 EDS 分析. 46 4.2 不同濺鍍功率對所得 MN6-y (y= 50、70、90、110)薄膜分析探討............... 48 4.2.1 不同濺鍍功率對所得 MN6-y (y= 50、70、90、110)薄膜於析氫反應(HER) 之 LSV 量測及其相對應的 Tafel 斜率 ............................................................. 48 4.2.2 不同濺鍍功率對所得 MN6-y (y= 50、70、90、110)薄膜之 EIS 與 CV 量測..................................................................................................................... 51 4.2.3 不同濺鍍功率對所得 MN6-y (y= 50、70、90、110)薄膜之 SEM 分析 ............................................................................................................................. 55 4.2.4 單層 MN6-90 薄膜之 TEM 及元素分佈成像分析................................. 57 4.2.5 單層 MN6-90 薄膜之 XPS 分析.............................................................. 59 4.3 第二層材料篩選對所得 MN6-90/M (M= CuFe-LDH、MnFe-LDH、NiFe-LDH、 CoFe-LDH ) 薄膜分析探討....................................................................................... 61 4.3.1 第二層材料篩選對所得 MN6-90/M (M= CuFe-LDH、MnFe-LDH、 NiFe-LDH、CoFe-LDH) 薄膜用於析氧反應(OER)之 LSV 量測及其相對應的 Tafel 斜率............................................................................................................ 61 4.4 不同鎳鐵含量之雙層 MN6-90/NiFe LDH-z (z= 1、2、3、4)薄膜分析探討 . 63 4.4.1 不同鎳鐵含量之雙層 MN6-90/NiFe LDH-z (z= 1、2、3、4)薄膜之 LSV 量測及其相對應的 Tafel 斜率........................................................................... 63 4.4.2 不同鎳鐵含量之雙層 MN6-90/NiFe LDH-z (z= 1、2、3、4)薄膜之 EIS 與 CV 分析.......................................................................................................... 66 IX 4.4.3 不同鎳鐵含量之雙層 MN6-90/NiFe LDH-z (z= 1、2、3、4)薄膜之 SEM 分析..................................................................................................................... 70 4.5 改變電化學沉積電壓對所得雙層 MN6-90/NiFe LDH-3n (n= a、b、c、d)薄膜 分析探討..................................................................................................................... 71 4.5.1 改變電化學沉積電壓對所得雙層 MN6-90/NiFe LDH-3n (n= a、b、c、 d)薄膜之 LSV 量測及其相對應的 Tafel 斜率.................................................. 71 4.5.2 改變電化學沉積電壓對所得雙層 MN6-90/NiFe LDH-3n (n= a、b、c、 d)薄膜之 EIS 與 CV 分析 .................................................................................. 74 4.5.3 改變電化學沉積電壓對所得雙層 MN6-90/NiFe LDH-3n (n= a、b、c、 d)薄膜之 SEM 及 EDS 分析.............................................................................. 78 4.6 改變電化學沉積時間對所得雙層 MN6-90/NiFe LDH-3c-k (k= 1、3、5、7)薄 膜分析探討................................................................................................................. 79 4.6.1 改變電化學沉積時間對所得雙層 MN6-90/NiFe LDH-3c-k (k= 1、3、5、 7)薄膜之 LSV 量測及其相對應的 Tafel 斜率.................................................. 79 4.6.2 改變電化學沉積時間對所得雙層 MN6-90/NiFe LDH-3c-k (k= 1、3、5、 7)薄膜之 EIS 與 CV 分析 .................................................................................. 82 4.6.3 改變電化學沉積時間對所得雙層 MN6-90/NiFe LDH-3c-k (k= 1、3、5、 7)薄膜之 SEM 及 EDS 分析.............................................................................. 86 4.6.4 雙層 MN6-90/NiFe LDH-3c-5 薄膜之 XRD 與 Raman 光譜分析......... 87 4.7 全電池電化學分析與測試.................................................................................. 89 4.7.1 將單層MN6-90薄膜及雙層MN6-90/NiFe LDH-3c-5薄膜進行整體水電 解測試................................................................................................................. 89 4.7.2 將單層MN6-90薄膜及雙層MN6-90/NiFe LDH-3c-5薄膜於不同電解質 中進行整體水電解測試..................................................................................... 91 4.7.3 單層 MN6-90 薄膜及雙層 MN6-90/NiFe LDH-3c-5 薄膜穩定性測試. 93 4.8 電極尺寸 4x4 cm2的鹼性交換膜水電解測試 ................................................... 96 X 4.8.1 整體水電解測試....................................................................................... 96 4.8.2 法拉第效率測試....................................................................................... 98 4.8.3 鹼性交換膜電池堆其水電解穩定性測試............................................. 101 4.8.4 單層MN6-90陰極薄膜及雙層MN6-90/NiFe LDH-3c-5陽極薄膜穩定性 測試後之 SEM 分析......................................................................................... 103 4.8.5 單層MN6-90陰極薄膜及雙層MN6-90/NiFe LDH-3c-5陽極薄膜穩定性 測試後之 Raman 光譜分析.............................................................................. 104 第五章、結論................................................................................................................... 107 參考文獻........................................................................................................................... 110

[1] Greenpeace 綠色和平,升溫逼近關鍵的 1.5 度,IPCC 釋出最新氣候報告,綠 色和平專題報導,2021。 [2] H. Liu, J. Gao, X. Xu, Q. Jia, L. Yang, S. Wang, and D. Cao, "Oriented Construction Cu3P and Ni2P Heterojunction to Boost Overall Water Splitting," Chemical Engineering Journal, 448 (2022) 137706. [3] 林國興、林有銘、林俊男 氫能發展的明日之星—水電解產氫,工業材料雜誌 376 期,2018。 [4] 何晨瑋,一文搞懂氫能!綠氫、藍氫、灰氫有何差異?,ESG 遠見電子報, 2022。 [5] J. Mergel, M. Carmo, and D. Fritz, "Status on Technologies for Hydrogen Production by Water Electrolysis," in Transition to Renewable Energy Systems, 423-450, (2013). [6] X. Li, X. Hao, A. Abudula, and G. Guan, "Nanostructured Catalysts for Electrochemical Water Splitting: Current State and Prospects," Journal of Materials Chemistry A, 4 (2016) 11973-12000. [7] C. Santoro, A. Lavacchi, P. Mustarelli, V. D. Noto, L. Elbaz, D. R. Dekel, and F. Jaouen, "What is Next in Anion‐Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future," ChemSusChem, 15 (2022). [8] J. Kwon, H. Han, S. Choi, K. Park, S. Jo, U. Paik, and T. Song, "Current Status of Self‐Supported Catalysts for Robust and Efficient Water Splitting for Commercial Electrolyzer," ChemCatChem, 11 (2019) 5898-5912. [9] S. Anantharaj, S. Kundu, and S. Noda, "Progress in Nickel Chalcogenide Electrocatalyzed Hydrogen Evolution Reaction," Journal of Materials Chemistry A, 8 (2020) 4174-4192. [10] D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, "Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers," Nano Letters, 13 (2013) 1341-1347. [11] X. Han, F. Cheng, T. Zhang, J. Yang, Y. Hu, and J. Chen, "Hydrogenated Uniform Pt Clusters Supported on Porous CaMnO3 as a Bifunctional Electrocatalyst for Enhanced Oxygen Reduction and Evolution," Advanced Materials, 26 (2014) 2047-2051. [12] T. Y. Ma, S. Dai, M. Jaroniec, and S. Z. Qiao, "Metal–Organic Framework Derived Hybrid Co3O4-Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes," Journal of the American Chemical Society, 136 (2014) 13925-13931. [13] D. Ham and J. Lee, "Transition Metal Carbides and Nitrides as Electrode Materials for Low Temperature Fuel Cells," Energies, 2 (2009) 873-899. [14] J. Shi, Z. Pu, Q. Liu, A. M. Asiri, J. Hu, and X. Sun, "Tungsten Nitride Nanorods Array Grown on Carbon Cloth as an Efficient Hydrogen Evolution Cathode at all pH Values," Electrochimica Acta, 154 (2015) 345-351. [15] P. Liu and J. A. Rodriguez, "Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface:  The Importance of Ensemble Effect," Journal of the American Chemical Society, 127 (2005) 14871-14878. [16] Y. Shi and B. Zhang, "Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction," Chemical Society Reviews, 45 (2016) 1529-1541. [17] Q. Gong , L. Cheng, C. Liu, M. Zhang, Q. Feng, H. Ye, M. Zeng, L. Xie, Z. Liu, and Y. Li, "Ultrathin MoS2(1–x)Se2x Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction," ACS Catalysis, 5 (2015) 2213-2219. [18] S. Deng, Y. Zhong, Y. Zeng, Y. Wang, Z. Yao, F. Yang, S. Lin, X. Wang, X. Lu, X. Xia, and J. Tu, "Directional Construction of Vertical Nitrogen-Doped 1T-2H MoSe2 /Graphene Shell/Core Nanoflake Arrays for Efficient Hydrogen Evolution Reaction," Advanced Materials, 29 (2017) 1700748. [19] Q. Wu, M. Luo, J. Han, W. Peng, Y. Zhao, D. Chen, M. Peng, J. Liu, F. M. F. De Groot, and Y. Tan, "Identifying Electrocatalytic Sites of the Nanoporous Copper– Ruthenium Alloy for Hydrogen Evolution Reaction in Alkaline Electrolyte," ACS Energy Letters, 5 (2020) 192-199. [20] D. Zhao, M. Dai, H. Liu, Z. Duan, X. Tan, and X. Wu, "Bifunctional ZnCo2S4@CoZn13 Hybrid Electrocatalysts for High Efficient Overall Water Splitting," Journal of Energy Chemistry, 69 (2022) 292-300. [21] Y. Shen, Y. Zhou, D. Wang, X. Wu, J. Li, and J. Xi, "Nickel-Copper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts for Hydrogen Evolution Reaction," Advanced Energy Materials, 8 (2018) 1701759. [22] J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, "Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution," ACS Catalysis, 3 (2013) 166-169. [23] N. S. Gultom, T. S. Chen, M. Z. Silitonga, and D. H. Kuo, "Overall Water Splitting Realized by Overall Sputtering Thin-Film Technology for a Bifunctional MoNiFe Electrode: A Green Technology for Green Hydrogen," Applied Catalysis B: Environmental, 322 (2023) 122103. [24] J. Liang, Q. Liu, T. Li, Y. Luo, S. Lu, X. Shi, F. Zhang, A. M. Asiri, and X. Sun, "Magnetron Sputtering Enabled Sustainable Synthesis of Nanomaterials for Energy Electrocatalysis," Green Chemistry, 23 (2021) 2834-2867. [25] J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, and K. Y. Wong, "Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles," Chemical Reviews, 120 (2020) 851-918. [26] Z. Chen, X. Duan, W. Wei, S. Wang, and B. J. Ni, "Recent Advances in Transition Metal-Based Electrocatalysts for Alkaline Hydrogen Evolution," Journal of Materials Chemistry A, 7 (2019) 14971-15005. [27] S. Anantharaj and S. Noda, "Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony," Small, 16 (2020) 1905779. [28] M. Tahir, L. Pan, F. Idress, X. Zhang, L. Wang, J. J. Zuo, and Z. L. Wang, "Electrocatalytic Oxygen Evolution Reaction for Energy Conversion and Storage: A Comprehensive Review," Nano Energy, 37 (2017) 136-157. [29] Z. Li, M. Hu, P. Wang, J. Liu, J. Yao, and C. Li, "Heterojunction Ctalyst in Eectrocatalytic Water Splitting," Coordination Chemistry Reviews, 439 (2021) 213953. [30] F. Lu, M. Zhou, Y. Zhou, and X. Zeng, "First-Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances," Small, 13 (2017) 1701931. [31] C. Wang, H. Shang, H. Xu, and Y. Du, "Nanoboxes Endow Non-Noble-Metal-Based Electrocatalysts with High Efficiency for Overall Water Splitting," Journal of Materials Chemistry A, 9 (2021) 857-874. [32] Z. Wang, X. Long, and S. Yang, "Effects of Metal Combinations on the Electrocatalytic Properties of Transition-Metal-Based Layered Double Hydroxides for Water Oxidation: A Perspective with Insights," ACS Omega, 3 (2018) 16529-16541. [33] C. Wang, M. Humayun, D. P. Debecker, and Y. Wu, "Electrocatalytic Water Oxidation with Layered Double Hydroxides Confining Single Atoms," Coordination Chemistry Reviews, 478 (2023) 214973. [34] J. Wang, F. Xu, H. Jin, Y. Chen, and Y. Wang, "Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications," Advanced Materials, 29 (2017) 1605838. [35] I. A. Raj and K. I. Vasu, "Transition Metal-Based Hydrogen Electrodes in Alkaline Solution ? Electrocatalysis on Nickel Based Binary Alloy Coatings," Journal of Applied Electrochemistry, 20 (1990) 32-38. [36] V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W. G. Lee, T. Yoon, and K. S. Kim, "Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions," ACS Catalysis, 7 (2017) 7196-7225. [37] J. Xiao, D. Cai, Y. Zhang, and X. Luo, "Ni4Mo Alloy Nanosheets Coating on Carbon Tube Arrays as High-Performance Electrocatalyst Toward Overall Water Splitting," Journal of Alloys and Compounds, 886 (2021) 161180. [38] J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, "Efficient Hydrogen Production on MoNi4 Electrocatalysts with Fast Water Dissociation Kinetics," Nature Communications, 8 (2017) 15437. [39] J. L. C. Fajín, M. N. D. S. Cordeiro, and J. R. B. Gomes, "Density Functional Theory Study of the Water Dissociation on Platinum Surfaces: General Trends," The Journal of Physical Chemistry A, 118 (2014) 5832-5840. [40] T. Li, H. Miras, and Y. F. Song, "Polyoxometalate (POM)-Layered Double Hydroxides (LDH) Composite Materials: Design and Catalytic Applications," Catalysts, 7 (2017) 260. [41] Z. Cai, X. Bu, P. Wang, W. Su, R. Wei, J. C. Ho, J. Yang, and X. Wang, "Simple and Cost Effective Fabrication of 3D Porous Core–Shell Ni Nanochains@NiFe Layered Double Hydroxide Nanosheet Bifunctional Electrocatalysts for Overall Water Splitting," Journal of Materials Chemistry A, 7 (2019) 21722-21729. [42] F. Song and X. Hu, "Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution atalysis," Nature Communications, 5 (2014). [43] F. Ma, Q. Wu, M. Liu, L. Zheng, F. Tong, Z. Wang, P. Wang, Y. Liu, H. Cheng, Y. Dai, Z. Zheng, Y. Fan, and B. Huang, "Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction," ACS Applied Materials & Interfaces, 13 (2021) 5142-5152. [44] Z. Li, M. Shao, H. An, Z. Wang, S. Xu, M. Wei, D. G. Evans, and X. Duan, "Fast Electrosynthesis of Fe-Containing Layered Double Hydroxide Arrays Toward Highly Efficient Electrocatalytic Oxidation Reactions," Chemical Science, 6 , (2015) 6624-6631. [45] Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, and X. Wang, "Recent Advances in Layered Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction," Journal of Materials Chemistry A, 7 (2019) 5069-5089. [46] C. Zhang, M. Shao, L. Zhou, Z. Li, K. Xiao, and M. Wei, "Hierarchical NiFe Layered Double Hydroxide Hollow Microspheres with Highly-Efficient Behavior toward Oxygen Evolution Reaction," ACS Applied Materials & Interfaces, 8 (2016) 33697-33703. [47] Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, "Synthesis, Anion Exchange, and Delamination of Co−Al Layered Double Hydroxide:  Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies," Journal of the American Chemical Society, 128 (2006) 4872-4880. [48] X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, and S. Yang, J "A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction," Angewandte Chemie International Edition, 53 (2014) 7584-7588. [49] L. Peng, N. Yang, Y. Yang, Q. Wang, X. Xie, S. W. Dongxiao, L. Shang, T. Zhang, and G. I. N. Waterhouse, "Atomic Cation‐Vacancy Engineering of NiFe‐Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction," Angewandte Chemie International Edition, 60 (2021) 24612-24619. [50] P. Zhang, W. Tan, H. He, and Z. Fu, "Binder-Free Quaternary Ni–Fe–W–Mo Alloy as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction," Journal of Alloys and Compounds, 853 (2021) 157265. [51] M. Sun, Q. Ye, L. Lin, Y. Wang, Z. Zheng, F. Chen, and Y. Cheng, "NiMo Solid-Solution Alloy Porous Nanofiber as Outstanding Hydrogen Evolution Electrocatalyst," Journal of Colloid and Interface Science, 637 (2023) 262-270. [52] Z. Wu, Z. Zou, J. Huang, and F. Gao, "NiFe2O4 Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities," ACS Applied Materials & Interfaces, 10 (2018) 26283-26292. [53] Z. Xu, Y. Ying, G. Zhang, K. Li, Y. Liu, N. Fu, X. Guo, F. Yu, and H. Huang, "Engineering NiFe Layered Double Hydroxide by Valence Control and Intermediate Stabilization Toward the Oxygen Evolution Reaction," Journal of Materials Chemistry A, 8 (2020) 26130-26138. [54] S. Liu, H. Zhang, E. Hu, T. Zhu, C. Zhou, Y. Huang, M. Ling, X. Gao, and Z. Lin, "Boosting Oxygen Evolution Activity of NiFe-LDH Using Oxygen Vacancies and Morphological Engineering," Journal of Materials Chemistry A, 9 (2021) 23697-23702.

無法下載圖示 全文公開日期 2025/07/21 (校內網路)
全文公開日期 2025/07/21 (校外網路)
全文公開日期 2025/07/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE