簡易檢索 / 詳目顯示

研究生: 張雅惠
Ya-hui Chang
論文名稱: 自然導光系統分析與比較
Comparison and analysis of global natural lighting illumination system
指導教授: 黃忠偉
Allen Jong-Woei Whang
李宗憲
Tsung-Xian Lee
口試委員: 阮聖彰
Shanq-Jang Ruan
邱炳彰
Bin-Chang Chieu
葉瑞徽
Ruey Huei (Robert) Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 自然導光系統自然光集光系統傳光系統放光系統照明環境
外文關鍵詞: natural lighting illumination system, concentrated system, transmitting system, emitting system
相關次數: 點閱:231下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在能源日益短缺的今日,如何的節省不必要的能源浪費與開發新的再生能源已經是當前最重要的課題,而每年在消耗在照明上的電力約佔所有用電量的10%~20%,而在當前所有的再生能源當中太陽光是最乾淨無汙染而且取之不盡用之不竭的再生能源,所以我們如果可以將太陽光使用於照明上,必定可以大大的節省能源用於照明上的損耗。但要如何的將太陽光運用於照明之上,所以就有許多的自然導光系統應運而生,而自然導光系統即是利用光學元件將自然的太陽光導入室內作照明的使用,整個照明的過程無須消耗電力,所以沒有能源浪費。而目前已經發展有許多種的自然導光方式,而本篇論文即在探討各種不同方式的自然導光系統的建構,與評估各種環境就需要搭配合適的自然導光系統,提供日後自然導光系統建構時的評估參考依據。


    In recent years, green energy has undergone a lot of development and has been the subject of many ap-plication. Many research studies have focused on illumination with sunlight as a means of saving energy and creating healthy lighting [1]. It has been the most important issue how to save energy and the development of new renewable energy sources in growing shortage of energy[2-7]. The electricity consumption for lighting accounts for about 10% of all electricity consumption to 20% every year [8].Now developed many kinds of natural light system methods. Natural light systems have collecting, transmitting, and lighting elements. This system will provide a great number of benefits for the people who use it[1]. By this system, we can bring daylight into interior for lighting use. This paper is to discuss different construction of natural light system and introduct a variety of environments which need to the natural light system that provides natural light guiding system constructed index.

    ABSTRACT II 誌 謝 III 目 錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究概述 5 第二章 集光方式 8 2.1 折射類集光器 8 2.1.1 菲涅爾透鏡集光 9 2.1.2 菱鏡式集光 13 2.2 反射類集光器 15 2.2.1 複合式拋物面集光器 15 2.2.2 線性菲涅爾反射鏡 16 2.2.3 碟狀反射器 16 2.2.4 槽狀反射器 17 第三章 傳光方式分析 19 3.1 鏡面光管 19 3.2 光纖 21 3.3 傳光管 23 3.4 傳輸效率比較 24 3.5 傳光方向 25 3.5.1 水平傳光 25 3.5.2 垂直傳光 27 第四章 放光系統 29 4.1 水平放光 29 4.2 垂直放光 32 第五章 耦合系統 34 第六章 各種自然光系統 36 6.1 Anidolic system 36 6.2 Himawari 39 6.3 NLIS 42 6.3.1 NLIS-集光系統 43 6.3.2 NLIS-傳光系統 44 6.3.3 NLIS-放光系統 45 6.4 SolatubeR 46 6.5 Hybrid lighting system 48 第七章 各種不同系統分析 51 7.1 集光系統 51 7.2 傳光系統 54 7.3 放光系統 57 第八章 自然導光系統應用 60 8.1 植物工廠 61 8.2 地下室 63 8.3 辦公室 65 8.4 倉庫 66 第九章 結論與未來展望 68 參考文獻 68

    [1] Allen Jong-Woei Whang, 2 Kao-Hsu Chou,1 Yi-Yung Chen,1, Yu-Chi Lee,2 * Shu-Hua Yang,1 Zong-Yi Lee,1 and Cheng-Nan Chen. Natural light illumination system. 2010.
    [2] Moriarty P, Honnery D. What is the global potential for renewable energy? Renewable and Sustainable Energy Reviews. 2012;16:244-52.
    [3] Kothari R, Tyagi VV, Pathak A. Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews. 2010;14:3164-70.
    [4] Liu L-q, Wang Z-x, Zhang H-q, Xue Y-c. Solar energy development in China—A review. Renewable and Sustainable Energy Reviews. 2010;14:301-11.
    [5] Panwar NL, Kaushik SC, Kothari S. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews. 2011;15:1513-24.
    [6] Ihm P, Nemri A, Krarti M. Estimation of lighting energy savings from daylighting. Building and Environment. 2009;44:509-14.
    [7] Behar O, Khellaf A, Mohammedi K. A review of studies on central receiver solar thermal power plants. Renewable and Sustainable Energy Reviews. 2013;23:12-39.
    [8] Alrubaih MS, Zain MFM, Alghoul MA, Ibrahim NLN, Shameri MA, Elayeb O. Research and development on aspects of daylighting fundamentals. Renewable and Sustainable Energy Reviews. 2013;21:494-505.
    [9] Omer AM. Renewable building energy systems and passive human comfort solutions. Renewable and Sustainable Energy Reviews. 2008;12:1562-87.
    [10] SOYDAN Y. Lighting of Commercial Buildings by Conveying Sunlight. Science and Technology. 2011.
    [11] Alireza Bahadori SZ, Gholamreza Zahedi. A review of geothermal energy resources in Australia: Current status
    and prospects. 2013.
    [12] Pacheco R, Ordonez J, Martinez G. Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews. 2012;16:3559-73.
    [13] SCHADE EAJ. daylighting for optic fiber. 2002.
    [14] Ghisi E. The Use Of Fibre Optics On Energy Efficient
    lighting In Buildings. 2002.
    [15] Experimental Investigation of Top Lighting and Side Lighting Solar
    Light Pipes under Sunnny Conditions in Winter in Beijing. 2013.
    [16] Evins R. A review of computational optimisation methods applied to sustainable building design. Renewable and Sustainable Energy Reviews. 2013;22:230-45.
    [17] Mayhoub MS, Carter DJ. The costs and benefits of using daylight guidance to light office buildings. Building and Environment. 2011;46:698-710.
    [18] Aries MBC, Newsham GR. Effect of daylight saving time on lighting energy use: A literature review. Energy Policy. 2008;36:1858-66.
    [19] Shao L, Callow JM. Daylighting performance of optical rods. Solar Energy. 2003;75:439-45.
    [20] Carter MMaD. Towards hybrid lighting systems: A review. 2009.
    [21] Krarti M, Erickson PM, Hillman TC. A simplified method to estimate energy savings of artificial lighting use from daylighting. Building and Environment. 2005;40:747-54.
    [22] Maxey LC. Flexible Sunlight—The History and Progress
    of Hybrid Solar Lighting. 2008.
    [23] Khan N, Abas N. Comparative study of energy saving light sources. Renewable and Sustainable Energy Reviews. 2011;15:296-309.
    [24] Smart M, Ballinger JA. Tracking mirror beam sunlighting for deep interior spaces. Solar Energy. 1983;30:527-36.
    [25] Mousazadeh H, Keyhani A, Javadi A, Mobli H, Abrinia K, Sharifi A. A review of principle and sun-tracking methods for maximizing solar systems output. Renewable and Sustainable Energy Reviews. 2009;13:1800-18.
    [26] Edgar MADaRM. Lighting with sunlight using sun tracking concentrators. 1976.
    [27] Tabor H. Stationary mirror systems for solar collectors. Solar Energy. 1958;2:27-33.
    [28] Garcia Hansen VaE, I2. Natural Illumination Of Deep-plan Office Buildings:
    light Pipe Strategies. 2003
    [29] Kischkoweit-Lopin M. An overview of daylighting systems. Solar Energy. 2002;73:77-82.
    [30] A.Suzuki RL. Nonimaging Fresnel Lenses Design and performance of solar concentrators.
    [31] Akisawa A, Hiramatsu M, Ozaki K. Design of dome-shaped non-imaging Fresnel lenses taking chromatic aberration into account. Solar Energy. 2012;86:877-85.
    [32] Yeh N. Analysis of spectrum distribution and optical losses under Fresnel lenses. Renewable and Sustainable Energy Reviews. 2010;14:2926-35.
    [33] Wang HA-RaC. Limitations in current day lighting related solar
    concentration devices: A critical review. 2010.
    [34] RABL A. Comparison Of Solar Concentrators. 1975.
    [35] Kritchman EM, Friesem AA, Yekutieli G. Efficient Fresnel lens for solar concentration. Solar Energy. 1979;22:119-23.
    [36] Nelson DT, Evans DL, Bansal RK. Linear Fresnel lens concentrators. Solar Energy. 1975;17:285-9.
    [37] Baig H, Heasman KC, Mallick TK. Non-uniform illumination in concentrating solar cells. Renewable and Sustainable Energy Reviews. 2012;16:5890-909.
    [38] Xie WT, Dai YJ, Wang RZ, Sumathy K. Concentrated solar energy applications using Fresnel lenses: A review. Renewable and Sustainable Energy Reviews. 2011;15:2588-606.
    [39] Mills DR, Giutronich JE. Ideal prism solar concentrators. Solar Energy. 1978;21:423-30.
    [40] K‥ ADaF, uhnlenz†. Optical Design using Fresnel Lenses.
    [41] Shin* IUaS. Development of Optical Fiber-based Daylighting System with Uniform Illumination. 2012.
    [42] Kashiw RLASAtAaTa. Nonimaging Fresnel Lens Concentrator
    [43] Leutz R, Suzuki A, Akisawa A, Kashiwagi T. Design Of A Nonimaging Fresnel Lens For Solar Concentrators. Solar Energy. 1999;65:379-87.
    [44] Chen YT, Chong KK, Bligh TP, Chen LC, Yunus J, Kannan KS, et al. Non-Imaging, Focusing Heliostat. Solar Energy. 2001;71:155-64.
    [45] Ralf LEUTZ AS, Atsushi AKISAWA, Takao Kashiwagi. Flux Densities In Optimum Nonimaging Fresnel Lens Solar
    concentrators For Space. 2000.
    [46] Hang Q, Jun Z, Xiao Y, Junkui C. Prospect of concentrating solar power in China—the sustainable future. Renewable and Sustainable Energy Reviews. 2008;12:2505-14.
    [47] Kalogirou SA. Solar thermal collectors and applications. Progress in Energy and Combustion Science. 2004;30:231-95.
    [48] Rabl A, Goodman NB, Winston R. Practical design considerations for CPC solar collectors. Solar Energy. 1979;22:373-81.
    [49] Rabl A. Optical and thermal properties of compound parabolic concentrators. Solar Energy. 1976;18:497-511.
    [50] Rabl JMGaA. Nonimaging compound parabolic
    concentrator-type reflectors with variable
    extreme direction. 1992.
    [51] Tripanagnostopoulos Y, Yianoulis P, Papaefthimiou S, Souliotis M, Nousia T. Cost effective asymmetric CPC solar collectors. Renewable Energy. 1999;16:628-31.
    [52] Edmonds IR. Prism-coupled compound parabola: a new ideal and optimal
    solar concentrator
    I. R. 1986.
    [53] Kandilli C, Ulgen K. Review and modelling the systems of transmission concentrated solar energy via optical fibres. Renewable and Sustainable Energy Reviews. 2009;13:67-84.
    [54] Fernandez-Garcia A, Zarza E, Valenzuela L, Perez M. Parabolic-trough solar collectors and their applications. Renewable and Sustainable Energy Reviews. 2010;14:1695-721.
    [55] Rafeeu Y, Ab Kadir MZA. Thermal performance of parabolic concentrators under Malaysian environment: A case study. Renewable and Sustainable Energy Reviews. 2012;16:3826-35.
    [56] Test of the Efficiency of the Concentrator
    with Different Types of Optical Fiber. 2007.
    [57] Rosemann A, Kaase H. Lightpipe applications for daylighting systems. Solar Energy. 2005;78:772-80.
    [58] Schlegel GO, Burkholder FW, Klein SA, Beckman WA, Wood BD, Muhs JD. Analysis of a full spectrum hybrid lighting system. Solar Energy. 2004;76:359-68.
    [59] Mohelnikova J. Daylighting and Energy Savings with Tubular Light Guides. 2008.
    [60] AP Robertson RHaNR. Optimisation and design of ducted daylight systems. 2010.
    [61] Jeong Tai Kim a GK. Overview and new developments in optical daylighting systems for building
    a healthy indoor environment. Building and Environment. 2010.
    [62] Swift PD, Smith GB. Cylindrical mirror light pipes. Solar Energy Materials and Solar Cells. 1995;36:159-68.
    [63] Swift PD. Splayed mirror light pipes. Solar Energy. 2010;84:160-5.
    [64] Couture P, Nabbus H, Al-Azzawi A, Havelock M. Improving passive solar collector for fiber optic lighting. Electrical Power and Energy Conference (EPEC), 2011 IEEE2011. p. 68-73.
    [65] Optical fiber communication competency based training. 2001.
    [66] Lior N. Mirrors in the sky: Status, sustainability, and some supporting materials experiments. Renewable and Sustainable Energy Reviews. 2013;18:401-15.
    [67] Serra R. Chapter 6—Daylighting. Renewable and Sustainable Energy Reviews. 1998;2:115-55.
    [68] Baumgartner Pgerksk. Simulation Of Tubular Daylighting Devices
    and Daylighting Shelves In Energyplus.
    [69] Dennis D. Earl CLM, and Jeff D. Muhs Robert R. Thomas. Performance Of New Hybrid Solar Lighting Luminaire Design. 2003.
    [70] Oakley G, Riffat SB, Shao L. Daylight performance of lightpipes. Solar Energy. 2000;69:89-98.
    [71] Mohelnikova J. evaluation of indoor illuminance from light guides. 2007.
    [72] Mayhoub MS. Hybrid Lighting Systems. 2011.
    [73] Canziani R, Peron F, Rossi G. Daylight and energy performances of a new type of light pipe. Energy and Buildings. 2004;36:1163-76.
    [74] Chung CKaT. Computer simulation study of a horizontal
    light pipe integrated with laser cut panels
    in a dense urban environment. 2008.
    [75] turlej Z. Elements Of The Daily and Artificial Lighting
    in An Interior. 2011. [76] Wittkopf SK, Yuniarti E, Soon LK. Prediction of energy savings with anidolic integrated ceiling across different daylight climates. Energy and Buildings. 2006;38:1120-9.
    [77] Linhart F, Scartezzini J-L. Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems. Solar Energy. 2010;84:587-95.
    [78] Altherr R, Gay J-B. A low environmental impact anidolic facade. Building and Environment. 2002;37:1409-19.
    [79] Ochoa CE, Capeluto IG. Evaluating visual comfort and performance of three natural light guiding systems for deep office buildings in highly luminous climates. Building and Environment. 2006;41:1128-35.
    [80] Scartezzini J-L, Courret G. Anidolic daylighting systems. Solar Energy. 2002;73:123-35.
    [81] Molteni SC, Courret G, Paule B, Michel L, Scartezzini JL. Design of anidolic zenithal lightguides for daylighting of underground spaces. Solar Energy. 2001;69, Supplement 6:117-29.
    [82] Courret G, Scartezzini J-L, Francioli D, Meyer J-J. Design and assessment of an anidolic light-duct. Energy and Buildings. 1998;28:79-99.
    [83] Wittkopf SK. Daylight performance of anidolic ceiling under different sky conditions. Solar Energy. 2007;81:151-61.
    [84] Engin YSaT. Lighting Building Interiors Requiring Lighting At Day Times By Conveying Daylight.
    [85] Cheng-Nan Chen1 Y-YC, Allen Jong-Woei Whang1, 2, and Li-Hsien Chen3. Design and Evaluation of Natural Light Guiding System in
    Ecological Illumination of Traffic Tunnel. 2009.
    [86] Jenkins D, Zhang X, Muneer T. Formulation of semi-empirical models for predicting the illuminance of light pipes. Energy Conversion and Management. 2005;46:2288-300.
    [87] Mayhoub M, Carter D. A feasibility study for hybrid lighting systems. Building and Environment. 2012;53:83-94.
    [88] Belakehal A, Tabet Aoul K, Bennadji A. Sunlighting and daylighting strategies in the traditional urban spaces and buildings of the hot arid regions. Renewable Energy. 2004;29:687-702.
    [89] Hourani MM, Hammad RN. Impact of daylight quality on architectural space dynamics: Case study: City Mall – Amman, Jordan. Renewable and Sustainable Energy Reviews. 2012;16:3579-85.
    [90] .Mitchell Gdmjcercmcmbca. Plant-growth Lighting For Space Life Support: A Review. 2010.
    [91] Morimoto T, Torii T, Hashimoto Y. Optimal control of physiological processes of plants in a green plant factory. Control Engineering Practice. 1995;3:505-11.
    [92] Earp AA, Smith GB, Franklin J, Swift P. Optimisation of a three-colour luminescent solar concentrator daylighting system. Solar Energy Materials and Solar Cells. 2004;84:411-26.
    [93] Bouchet B, Fontoynont M. Day-lighting of underground spaces: design rules. Energy and Buildings. 1996;23:293-8.
    [94] P.Torcellini LE. A literature review of the effects of Naural Light on Building occupants. 2002.
    [95] Mollin NFR. Warehouse Lighting: I-An Analytic Study. 1966.
    [96] 彭彥凱,不同型式光纖與集光器搭配之效率測試,中央大學能源工程研究所,碩士論文,民國九十八年七月。
    [97] 顧乃倫,光學耦合傳光裝置應用於SunLego模組,國立台灣科技大學光電研究所,碩士論文,民國101年七月
    [98] 趙維揚,自然光照明系統之專利分析及光學模擬 –以「放光模組」之改良為核心,國立台灣科技大學電子研究所,碩士論文,民國101年七月
    [99] 游仁龍,利用田口法設計自然光照明系統R之放光模組,國立台灣科技大學電子研究所,碩士論文,民國101年七月
    [100] 徐鈺翔,新式自由曲面反射罩設計應用於照明光學耦合器,國立台灣科技大學光電研究所,碩士論文,民國101年七月
    [101] 陳偉安,具光學結構設計之高效率傳光管,國立台灣科技大學光電研究所,碩士論文,民國101年七月
    [102] Himawari Inc.website
    [103] Monodraught Ltd .Website
    [104] Anidolic Systems. Website
    [105] MF corp. Website
    [106] HSL Constructor Pte Ltd . Website
    [107] The energygroove.net
    [108] 科技農業的進行式— 植物工廠發展沿革與台灣推動現況 Website

    QR CODE