簡易檢索 / 詳目顯示

研究生: 黃柏霖
Po-Lin Huang
論文名稱: 應用於X頻帶之可重構式全金屬反射陣列天線
X-band Reconstructable Metal-Only Reflectarrays
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 馬自莊
Tzyh-Ghuang Ma
吳宗霖
Tzong-Lin Wu
陳士元
Shih-Yuan Chen
陳晏笙
Yen-Sheng Chen
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 102
中文關鍵詞: 反射陣列天線全金屬天線陣列毫米波波束控制
外文關鍵詞: reflectarray, metal-only, antenna array, millimeter wave, beam control
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主題為「應用於X頻帶之可重構式全金屬反射陣列天線」,其創新之處在於移除介質體,僅藉由金屬構裝而成的陣列平面。相較於傳統全金屬式的反射陣列天線常出現的問題:單元反射相位可控範圍不廣,為了解決此問題,吾人提出一款以阿基米德螺線槽孔實現於全金屬架構之單元,以增加反射相位可控範圍。另一方面,吾人發現全金屬式反射陣列通常以一面完整的不鏽鋼金屬進行雷射切割,將所有電路單元一次性完整切割於該面板之上。經深入分析發覺此一作法有下列缺點:一次性面板雷射切割之成本甚高、面板施作後即無法更動修改以及面板重量可觀易凹陷不平整。為了克服以上缺點,吾人想出類似地磚排列之方式,先將具有各種反射相位響應的全金屬反射陣列單元一一以雷射切割完成,再植入預先設計好的3D列印框架,以完成反射陣列之單元電路布局。相較於傳統設計,此架構能夠有以下特徵:
    1. 每金屬單元大量製造可降低總陣列成本。
    2. 單一電路單元損壞不影響製作流程。
    3. 單元可於框架內重新排列組合,輕易產生不同的波束指向。
    4. 全金屬的設計可有效降低介質損耗的問題。
    最終實現在中心頻率10 GHz,以820個單元組合而成直徑為16 λo的全金屬反射陣列,饋入天線僅11.36 dBi,總反射陣列天線增益達到29.64 dBi,孔徑效率為35.7%,並提供6.58%之1-dB頻寬。
    本論文詳細闡述此研究主題,包含研究動機、文獻回顧、反射陣列單元設計及反射陣列系統設計,最後以四組不同波束指向之狀態分別進行模擬、實作與量測。基於可重構之特性,此設計為無線衛星通訊帶來嶄新的發展。


    In this thesis: X-band Reconstructable Metal-Only Reflectarrays are proposed. Compared to conventional metal-only reflectarrays exciting the problem of limited reflection phase coverage, this design is applying Archimedean spiral slots in a unit cell to enhance the coverage of reflection phase. On the other hand, the conventional metal-only reflectarrays are usually made on a single metal plane and the distribution of unit cells are made by laser cutting at one time, after in-depth study, we found that there exist the following disadvantages: high cost of laser cutting on whole metal, can not do any modification after laser cutting is done, and the flatness of the metal plane may destroyed by its weighting. In order to overcome those illness, this thesis propose a brick-liked arrangement, by making single cell separately, and mounting into lattice made by 3D printer to construct the overall reflectarray. Compared to conventional reflectarrays, this novel design has the following characteristics:
    1. Each cell is easy to manufacture at low cost.
    2. Do not affect the process if a cell is broken
    3. Changing the beam direction easily by rearranging the unit cells.
    4. Dielectric loss can be effectively eliminated by metal-only design.
    The reflectarrays with 16 λ in diameter are consist of 820 unit cells, operating frequency at 10 GHz are realized. The gain of feeding antenna is 11.36 dBi, while the gain of this design is 29.64 dBi. This design reaches aperture efficiency of 35.7%, also provides 1-dB bandwidth of 6.58%.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 3 1.2.1 反射陣列天線單元種類 3 1.2.2 介質反射陣列天線 4 1.2.3 全金屬反射陣列天線 4 1.3 研究貢獻 6 1.4 論文組織 7 第二章 反射陣列之單元分析 8 2.1 前言 8 2.2 單元電路模擬方法 8 2.3 全金屬單元電路比較 10 2.4 阿基米德螺線槽孔金屬單元之電路架構 18 2.4.1 單元電路響應分析 20 2.4.2 單元電路架構設計 31 2.5 單元斜向入射與極化之關係 38 2.6 單元金屬材質比較 41 2.7 結語 43 第三章 反射陣列之系統分析 44 3.1 前言 44 3.2 反射陣列系統設計流程 45 3.3 饋入天線特性分析 46 3.3 孔徑效率探討 49 3.4 單元相位分布計算 53 3.5 結語 58 第四章 反射陣列系統整合之實作及驗證 59 4.1 前言 59 4.2 反射陣列系統模擬方法 59 4.3 反射陣列系統實作 62 4.4 反射陣列系統驗證 68 4.4.1 狀態一、波束指向 ro=(θ,ϕ)=(0°,0°) 70 4.4.2 狀態二、波束指向 ro=(θ,ϕ)=(30°,180°) 75 4.4.3 狀態三、波束指向 ro=(θ,ϕ)=(0°,0°) & (30°,180°) 78 4.4.4 狀態四、波束指向 ro=(θ,ϕ)=(45°,45°) 80 4.4.5 全金屬反射陣列效能比較 82 4.5 結語 83 第五章 結論 84 5.1 總結 84 5.2 未來發展 85 參考文獻 86

    [1] D. G. Berry, R. G. Malech and W. A. Kennedy, "The reflectarray antenna," IEEE Trans. Antennas Propag., vol. AP-11, pp. 645-651, Nov. 1963.
    [2] David M. Pozar, Stephen D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propag., vol. 45, no. 2, pp.287-296, Feb. 1997.
    [3] J. Han, L. Li, G. Liu, Z. Wu and Y. Shi, "A Wideband 1 bit 12 × 12 Reconfigurable Beam-Scanning Reflectarray: Design, Fabrication, and Measurement," IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 6, pp. 1268-1272, June 2019.
    [4] B. D. Nguyen and C. Pichot, "Unit-Cell Loaded With PIN Diodes for 1-Bit Linearly Polarized Reconfigurable Transmitarrays," IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 1, pp. 98-102, Jan.2019.
    [5] P. Nayeri, F. Yang, A. Z. Elsherbeni, Reflectarray Antennas: Theory, Designs, Applications, John Wiley and Sons, 2018.
    [6] D.-C. Chang and M.-C. Huang, "Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization, " IEEE Trans. Antennas Propag., vol. 43, no. 8, pp. 829-834, Aug. 1995.
    [7] R. D. Javor, X.-D. Wu and K. Chang, "Design and performance of a microstrip reflectarray antenna, " IEEE Trans. Antennas Propag., vol. 43, no. 9, pp. 932-939, Sept. 1995.
    [8] K.-C. Chen, C.-.C. Tzuang and J. Huang, "A higher-order microstrip reflectarray at Ka-band," IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 566-569, 2001.
    [9] D. M. Pozar, and T. A. Metzler, "Analysis of a reflectarray antenna usingmicrostrip patches of variables size," IEEE Electronics Letters, vol. 29, no. 8, pp.657-658, Apr. 1993.
    [10] M. E. Bialkowski, and K. H. Sayidmarie, "Investigations into phase characteristics of a single-layer reflectarray employing patch or ring elements of variable size," IEEE Trans. Antennas Propag., vol. 56, no. 11, pp. 3366-3372, Nov. 2008.
    [11] J. Huang, and R. J. Pogorzelski, "A Ka-band microstrip reflectarray with elements having variable rotation angles," IEEE Trans. Antennas Propag., vol. 46, no. 5, pp. 650-656, May 1998.
    [12] Y. Sun, and K. W. Leung, "Millimeter-wave substrate-based dielectric reflectarray, " IEEE Antennas Wireless Propag. Lett., vol. 17, no. 12, pp. 2329-2333, Dec. 2018.
    [13] Y. H. Cho, W. J. Byun and M. S. Song, "Metallic-Rectangular-Grooves Based 2D Reflectarray Antenna Excited by an Open-Ended Parallel-Plate Waveguide," IEEE Transactions on Antennas and Propagation, vol. 58, no. 5, pp. 1788-1792, May 2010.
    [14] Y. H. Cho, W. J. Byun and M. S. Song, "High Gain Metal-Only Reflectarray Antenna Composed of Multiple Rectangular Grooves," IEEE Transactions on Antennas and Propagation, vol. 59, no. 12, pp. 4559-4568, Dec. 2011.
    [15] H. Chou, C. Lin and M. Wu, "A High Efficient Reflectarray Antenna Consisted of Periodic All-Metallic Elements forthe Ku-band DTV Applications," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1542-1545, 2015.
    [16] R. Deng, F. Yang, S. Xu and M. Li, "A 100-GHz Metal-Only Reflectarray for High-Gain Antenna Applications," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 178-181, 2016.
    [17] W. An, S. Xu and F. Yang, "A Metal-Only Reflectarray Antenna Using Slot-Type Elements," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1553-1556, 2014.
    [18] R. Deng, F. Yang, S. Xu and M. Li, "A Low-Cost Metal-Only Reflectarray Using Modified Slot-Type Phoenix Element With 360° Phase Coverage," IEEE Transactions on Antennas and Propagation, vol. 64, no. 4, pp. 1556-1560, April 2016.
    [19] K. Q. Henderson and N. Ghalichechian, "Circular-Polarized Metal-Only Reflectarray With Multi-Slot Elements," IEEE Transactions on Antennas and Propagation, vol. 68, no. 9, pp. 6695-6703, Sept. 2020.
    [20] F. Yang, R. Deng, S. Xu and M. Li, "Design and Experiment of a Near-Zero-Thickness High-Gain Transmit-Reflect-Array Antenna Using Anisotropic Metasurface," IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 2853-2861, June 2018.
    [21] F. Xue, H. Wang, M. Yi, G. Liu and X. Dong, "Design of a broadband single-layer linearly polarized reflectarray using four-arm spiral elements," IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 696-699, 2017.
    [22] J. Hwan, Y. J. Yoon, W-S. Lee, and J.-h. So, "Broadband microstrip reflectarray with five parallel dipole elements, " IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1109-1113, 2015.
    [23] F. Xue, H. J. Wang, M. Yi, and G. Liu, "A broadband Ku‐band microstrip reflectarray antenna using single‐layer fractal elements," Microw. Opt. Technol. Lett., vol. 58, no.3, pp. 658-662, Mar. 2016.
    [24] H. Bodur, S. Ünaldi, S. Çimen, and G. Çakir, "Broadband single-layer reflectarray antenna for X-band applications, " IET Microw., Antennas Propag., vol. 12, no. 10, pp. 1609–1612, Aug. 2018.
    [25] Q. Chen, S. Qu, J. Li, Q. Chen and M. Xia, "An X-Band Reflectarray With Novel Elements and Enhanced Bandwidth," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 317-320, 2013.
    [26] L. Guo, H. Yu, W. Che and W. Yang, "A Broadband Reflectarray Antenna Using Single-Layer Rectangular Patches Embedded With Inverted L-Shaped Slots," IEEE Transactions on Antennas and Propagation, vol. 67, no. 5, pp. 3132-3139, May 2019.
    [27] H. Yu and L. Guo, "Broadband Single-Layer Reflectarray Antenna Employing Circular Ring Elements Dented With Sectorial Slits," IEEE Access, vol. 7, pp. 165814-165819, 2019.
    [28] A. Yu, F. Yang, A. Z. Elsherbeni, J. Huang, and Y. Rahmat‐Samii, “Aperture efficiency analysis of reflectarray antennas,” Microw. Opt. Technol. Lett., Vol. 52, No. 2, pp. 364–372, Feb. 2010.
    [29] Datasheet of Pasternack PE9856/SF-10 [Online]. Available:
    https://www.pasternack.com/standard-gain-horn-waveguide-size-wr90-10-db-gain-sma-female-pe9856sf-10-p.aspx
    [30] C. A. Balanis, Antenna Theory: Analysis and Design. New York, NY, USA: Wiley, 2016.
    [31] Ansys HFSS 2019 R2. Available: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/Electronics/v194//Subsystems/HFSS/HFSS.htm%23cshid=133072
    [32] https://elmag.fel.cvut.cz/sites/default/files/users/hazdrap/files/Reflector_antennas.pdf
    [33] D. M. Pozar, S. D. Targonski and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Transactions on Antennas and Propagation, vol. 45, no. 2, pp. 287-296, Feb. 1997.
    [34] H. Yang et al., "A Study of Phase Quantization Effects for Reconfigurable Reflectarray Antennas," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 302-305, 2017.
    [35] G. Wu, S. Qu, S. Yang and C. H. Chan, "Broadband, Single-Layer Dual Circularly Polarized Reflectarrays With Linearly Polarized Feed," IEEE Transactions on Antennas and Propagation, vol. 64, no. 10, pp. 4235-4241, Oct. 2016.
    [36] C. Fan, W. Che, W. Yang and S. He, "A Novel PRAMC-Based Ultralow-Profile Transmitarray Antenna by Using Ray Tracing Principle," IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1779-1787, April 2017.

    無法下載圖示 全文公開日期 2024/08/12 (校內網路)
    全文公開日期 2031/08/12 (校外網路)
    全文公開日期 2031/08/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE