簡易檢索 / 詳目顯示

研究生: Adil Muneeb
Adil Muneeb
論文名稱: 應用在金屬空氣電池和水電解之雙功能觸媒材料設計的關鍵參數研究
Investigation of the key parameters for the design of bifunctional catalytic materials applied in metal-air batteries and water electrolyzers
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
Chun Chiu
顏維謀
Wei-Mon Yan
李天錫
Tien-Hsi Lee
林景崎
Jing-Chie. Lin
曾有志
Yu-Chih Tzeng
Raman Sankar
Raman Sankar
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 102
中文關鍵詞: 金屬空氣電池水電解氧還原反應析氧反應析氫反應
外文關鍵詞: Metal-air batteries., Water electrolyzers., Oxygen reduction reaction (ORR)., Hydrogen evolution reaction (HER)., Oxygen evolution reaction (OER).
相關次數: 點閱:438下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

金屬空氣電池和水電解由於其高能量密度之特性,已被證明是儲能和轉換裝置的重要組成部分。然而,某些挑戰,例如催化材料對析氧反應 OER的緩慢動力學,(在金屬-空氣電池/水電解產生的 O2)。氧還原反應, ORR(金屬空氣電池放電)和析氫反應, HER(水電解中產生H2)目前在工業應用之前仍需解决。這項研究主要專注於探索和合理設計優良的OER、ORR和HER雙功能催化資料,以及在金屬空氣電池和水電解等實用可再生能源儲存和轉換裝置中長期穩定性和增强本徵的活化性。

在OER和ORR方面,提出了一種雙功能催化材料Pr0.9Ca0.1Co0.8Fe0.2O3-?被設計並研製了具有最佳的Co4+/Co3+氧化態和氧空位比的單一鈣鈦礦型的氧化物,有利於促進對金屬空氣電池充放電。在HER和OER方面,作為一種高效的鹼性介質的水分解介質於新型層狀磷硫化鎳鋰物(NiLiP2S6)晶體被分解催化中被開發並應用於水電解。最終合成了Co和Fe雙金屬磷硫化物,並對其進行了研究,它被確認有助於未來OER催化劑合理的設計和關鍵描述符


Metal air batteries and water electrolyzers have been proven as the significant face of energy storage and conversion devices due to their high energy densities. However, certain challenges such as sluggish kinetics of catalytic materials towards oxygen evolution reaction OER (charging in metal-air batteries/ O2 production in water electrolyzers), oxygen reduction reaction ORR (Discharging in metal-air batteries), and hydrogen evolution reaction HER (H2 production in water electrolyzers) still need to be addressed before their industrial use. This research work focused mainly on the investigation and rational design of superior bifunctional catalytic materials towards OER, ORR, and HER together with long-term stability and enhanced intrinsic activity employed in practical renewable energy storage and conversion devices such as metal-air batteries and water electrolyzers.
In terms of OER and ORR, a bifunctional catalytic material Pr0.9Ca0.1Co0.8Fe0.2O3-? is designed and developed as single perovskite oxide with an optimum ratio of Co4+/Co3+ oxidation state and oxygen vacancy that could facilitate charging and discharging towards metal-air batteries. In terms of HER and OER, novel layered nickel lithium phosphosulfide (NiLiP2S6) crystals was devolved as a highly efficient water-splitting catalyst in alkaline media towards water electrolyzer applications. Finally, bimetallic Co and Fe phosphosulphide has been synthesized, and investigations have been made to identify the critical descriptor that can help towards the future rational design of the catalyst towards OER.

Contents Abstract 5 Acknowledgements 6 LIST OF TABLES 10 LIST OF FIGURES 11 Chapter 1. Introduction and significance of the research impact 14 1.1 Energy outlook and challenges 14 1.1.1 Environmental Pollution 14 1.1.2 Climate change 15 1.1.3 Security of energy supplies 15 1.1.4 Meeting the challenge 15 1.2 Metal Air Batteries 16 1.3 Water Electrolyzers 19 1.4 Electrocatalytic Oxygen Reactions 21 1.4.1 Electrocatalyst development for Oxygen Reduction Reaction (ORR) 21 1.4.2 Electrocatalyst Development for Oxygen Evolution Reaction (OER) 25 1.4.3 Electrocatalyst Development for Hydrogen Evolution Reaction (HER) 26 1.5 Research Objectives and Outline 28 Chapter 2. Experimental methods and characterization techniques 31 2.1 Synthesis Routes 31 2.1.1 Nitrate combustion method 31 2.1.2 Solid state reaction 32 2.1.3 Chemical vapor transport method 32 2.2 Physio-chemical characterizations 33 2.2.1 Transmission electron microscopy (TEM) 33 2.2.2 Scanning electron microscopy 33 2.2.3 X-ray diffraction 34 2.2.4 X-ray photoelectron spectroscopy 34 2.2.5 Raman spectroscopy 34 2.3 Electrochemical characterization 35 2.3.1 Linear sweep voltammetry (LSV) 35 2.3.2 Chronoamperometry (CA) 35 2.3.3 Tafel Plots 35 2.3.4 Impedance measurements 35 Chapter 3. 37 Tailoring Co4+/Co3+ active sites in perovskite towards ORR/OER 37 3.1 Introduction 37 3.2 Experimental Section 38 3.2.1 Material Synthesis 38 3.2.2 Material Characterizations (XRD, TEM, SEM, XPS) 39 3.2.3 Electrochemical Measurements 39 3.3 Results and Discussion: 40 3.3.1 XRD and crystal structure of the perovskite catalysts 40 3.3.2 TEM and SEM 43 3.3.3 XPS 45 3.3.4 ORR/OER electrocatalytic activity and stability of the perovskite oxide catalyst 49 3.4 Summary 56 Chapter 4 57 Novel Layered NiLiP2S6 Crystals towards OER/HER 57 4.1 Introduction 57 4.2 Materials and Methods 58 4.2.1 Preparation of NiLiP2S6 (NLPS) crystal 58 4.2.2 Structural Characterization (XRD, SEM, TEM, XPS) 59 4.2.3 Electrochemical Measurements 60 4.2.4 Overall water splitting test 60 4.3 Results and Discussion 60 4.3.1 XRD and crystal structure 60 4.3.2 TEM and SEM 64 4.3.3 XPS 65 4.3.4 Electrocatalytic performance for OER/HER 66 4.3.5 Application as overall water splitting (water electrolyzer catalyst) 70 4.4 Summary 72 Chapter 5 73 Enhancing the Spin State of Cobalt Cation towards OER 73 5.1 Introduction 73 5.2 Experimental Section 74 5.2.1 Material Synthesis 74 5.2.2 Structural Characterization 74 5.2.3 Electrochemical Measurements 75 5.3 Results and discussion 75 5.3.1 XRD and structure 75 5.3.2 XPS and EPR 77 5.3.3 Electrocatalytic performance for OER 80 5.3.4 DFT 86 5.3.5 Soft X-ray absorption spectroscopy (XAS) 88 5.4 Summary 89 Chapter 6 90 Conclusion and Future Work 90 6.1 Conclusion 90 6.2 Future work 91 References 92 Appendix 101

References

(1) Mamaca, N.; Mayousse, E.; Arrii-clacens, S.; Napporn, T. W.; Servat, K.; Guillet, N.; Kokoh, K. B. Applied Catalysis B : Environmental Electrochemical Activity of Ruthenium and Iridium Based Catalysts for Oxygen Evolution Reaction. "Applied Catal. B, Environ. 2012, 111–112, 376–380. https://doi.org/10.1016/j.apcatb.2011.10.020.
(2) Moureaux, F.; Stevens, P.; Toussaint, G.; Chatenet, M. Timely-Activated 316L Stainless Steel: A Low Cost, Durable and Active Electrode for Oxygen Evolution Reaction in Concentrated Alkaline Environments; 2019; Vol. 258. https://doi.org/10.1016/j.apcatb.2019.117963.
(3) Costamagna, P.; Srinivasan, S. Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000: Part I. Fundamental Scientific Aspects. J. Power Sources 2001, 102 (1–2), 242–252. https://doi.org/10.1016/S0378-7753(01)00807-2.
(4) Kötz, R.; Stucki, S. Stabilization of RuO2 by IrO2 for Anodic Oxygen Evolution in Acid Media. Electrochim. Acta 1986, 31 (10), 1311–1316. https://doi.org/10.1016/0013-4686(86)80153-0.
(5) Chen, S.; Gasteiger, H. A.; Hayakawa, K.; Tada, T.; Shao-Horn, Y. Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes. J. Electrochem. Soc. 2010, 157 (1), A82. https://doi.org/10.1149/1.3258275.
(6) Linden, D.; Reddy, T. B. Handbook of Batteries; McGraw-Hill: New York, N.Y., 2002.
(7) Ramakrishnan, P.; Im, H.; Baek, S.; Sohn, J. I. Recent Studies on Bifunctional Perovskite Electrocatalysts in Oxygen Evolution, Oxygen Reduction, and Hydrogen Evolution Reactions under Alkaline Electrolyte. Isr. J. Chem. 2019, 59 (8), 708–719. https://doi.org/10.1002/ijch.201900040.
(8) Wang, Z.-L.; Xu, D.; Xu, J.-J.; Zhang, X.-B. Oxygen Electrocatalysts in Metal–Air Batteries: From Aqueous to Nonaqueous Electrolytes. Chem. Soc. Rev. 2014, 43 (22), 7746–7786. https://doi.org/10.1039/C3CS60248F.
(9) Britain), R. S. (Great; Hutton Charles; Maty Paul Henry; Pearson Richard; Shaw, G.; Stuart Alexander; Britain), R. S. (Great; Britain), R. S. (Great. Philosophical Transactions of the Royal Society of London.; London :Royal Society of London., 1785; Vol. v.75 (1785.
(10) LeRoy, R. L. Industrial Water Electrolysis: Present and Future. Int. J. Hydrogen Energy 1983, 8 (6), 401–417. https://doi.org/https://doi.org/10.1016/0360-3199(83)90162-3.
(11) Rand, D. A. J.; Dell, R. M.; Chemistry, R. S. of. Hydrogen Energy : Challenges and Prospects; RSC Publishing: Cambridge, 2008.
(12) Lu, P. W. T.; Srinivasan, S. Advances in Water Electrolysis Technology with Emphasis on Use of the Solid Polymer Electrolyte. J. Appl. Electrochem. 1979, 9 (3), 269–283. https://doi.org/10.1007/BF01112480.
(13) Bockris, J. O. A Hydrogen Economy. Science (80-. ). 1972, 176 (4041), 1323 LP – 1323. https://doi.org/10.1126/science.176.4041.1323.
(14) JOM, B. The Hydrogen Economy: Its History. Int. J. Hydrogen Energy 2013, 38 (6), 2579–2588. https://doi.org/10.1016/j.ijhydene.2012.12.026.
(15) Laguna-Bercero, M. A. Recent Advances in High Temperature Electrolysis Using Solid Oxide Fuel Cells: A Review. J. Power Sources 2012, 203, 4–16. https://doi.org/https://doi.org/10.1016/j.jpowsour.2011.12.019.
(16) Zeng, K.; Zhang, D. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications. Prog. Energy Combust. Sci. 2010, 36 (3), 307–326. https://doi.org/10.1016/j.pecs.2009.11.002.
(17) Yeager, E. Dioxygen Electrocatalysis: Mechanisms in Relation to Catalyst Structure. J. Mol. Catal. 1986, 38 (1), 5–25. https://doi.org/https://doi.org/10.1016/0304-5102(86)87045-6.
(18) Scholz, F. Books on Fundamental Electrochemistry and Electroanalytical Techniques. In Electroanalytical Methods: Guide to Experiments and Applications; Scholz, F., Bond, A. M., Compton, R. G., Fiedler, D. A., Inzelt, G., Kahlert, H., Komorsky-Lovrić, Š., Lohse, H., Lovrić, M., Marken, F., Neudeck, A., Retter, U., Scholz, F., Stojek, Z., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; pp 343–345. https://doi.org/10.1007/978-3-642-02915-8_19.
(19) Wroblowa, H. S.; Yen-Chi-Pan; Razumney, G. Electroreduction of Oxygen: A New Mechanistic Criterion. J. Electroanal. Chem. Interfacial Electrochem. 1976, 69 (2), 195–201. https://doi.org/https://doi.org/10.1016/S0022-0728(76)80250-1.
(20) Singh, R. N.; Awasthi, R.; Sharma, C. S. Review: An Overview of Recent Development of Platinum-Based Cathode Materials for Direct Methanol Fuel Cells. Int. J. Electrochem. Sci. 2014, 9 (10), 5607–5639.
(21) Christensen, P. A.; Hamnett, A.; Linares-Moya, D. Oxygen Reduction and Fuel Oxidation in Alkaline Solution. Phys. Chem. Chem. Phys. 2011, 13 (12), 5206–5214. https://doi.org/10.1039/c0cp02365e.
(22) Vielstich, W., Lamm, A., Gasteiger, H. A., & Yokokawa, H. (2003). Handbook of fuel cells: Fundamentals, technology, and applications. Chichester, E. W. No Title.
(23) Hu, C.; Dai, L. Carbon-Based Metal-Free Catalysts for Electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. Engl. 2016, 55 (39), 11736–11758. https://doi.org/10.1002/anie.201509982.
(24) Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G. Electrochemical Methods: Fundamentals and Applications; Wiley New York, 1980; Vol. 2.
(25) Goodenough, J. B.; Manoharan, R.; Paranthaman, M. Surface Protonation and Electrochemical Activity of Oxides in Aqueous Solution. J. Am. Chem. Soc. 1990, 112 (6), 2076–2082. https://doi.org/10.1021/ja00162a006.
(26) Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 2011, 334 (6061), 1383–1385. https://doi.org/10.1126/science.1212858.
(27) Zhao, B.; Zhang, L.; Zhen, D.; Yoo, S.; Ding, Y.; Chen, D.; Chen, Y.; Zhang, Q.; Doyle, B.; Xiong, X.; Liu, M. A Tailored Double Perovskite Nanofiber Catalyst Enables Ultrafast Oxygen Evolution. Nat. Commun. 2017, 8, 14586. https://doi.org/10.1038/ncomms14586.
(28) Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W. Volcano Plots in Hydrogen Electrocatalysis - Uses and Abuses. Beilstein J. Nanotechnol. 2014, 5, 846–854. https://doi.org/10.3762/bjnano.5.96.
(29) Cousin, P.; Ross, R. A. Preparation of Mixed Oxides: A Review. Mater. Sci. Eng. A 1990, 130 (1), 119–125. https://doi.org/https://doi.org/10.1016/0921-5093(90)90087-J.
(30) Schmidt, P.; Binnewies, M.; Glaum, R.; Schmidt, M. Chemical Vapor Transport Reactions–Methods, Materials, Modeling. In Advanced Topics on Crystal Growth; InTech, 2013. https://doi.org/10.5772/55547.
(31) Anantharaj, S.; Ede, S. R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revisiting Activity Parameters with a Critical Assessment. Energy Environ. Sci. 2018, 11 (4), 744–771. https://doi.org/10.1039/C7EE03457A.
(32) Huang, Z.; Qin, X.; Gu, X.; Li, G.; Mu, Y.; Wang, N.; Ithisuphalap, K.; Wang, H.; Guo, Z.; Shi, Z.; Wu, G.; Shao, M. Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn-Air Batteries. ACS Appl. Mater. Interfaces 2018, 10 (28), 23900–23909. https://doi.org/10.1021/acsami.8b06984.
(33) Murry, C. E.; Minh, H. N. References 1. 2009, 324 (April), 48–50.
(34) Nie, Y.; Li, L.; Wei, Z. Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction. Chem. Soc. Rev. 2015, 44 (8), 2168–2201. https://doi.org/10.1039/c4cs00484a.
(35) Puthiyapura, V. K.; Pasupathi, S.; Su, H.; Liu, X.; Pollet, B.; Scott, K. Investigation of Supported IrO2 as Electrocatalyst for the Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolyser. Int. J. Hydrogen Energy 2014, 39 (5), 1905–1913. https://doi.org/10.1016/j.ijhydene.2013.11.056.
(36) Hu, C.; Dai, L. Carbon-Based Metal-Free Catalysts for Electrocatalysis beyond the ORR. Angew. Chemie - Int. Ed. 2016, 55 (39), 11736–11758. https://doi.org/10.1002/anie.201509982.
(37) Wang, H.; Xu, W.; Richins, S.; Liaw, K.; Yan, L.; Zhou, M.; Luo, H. Polymer-Assisted Approach to LaCo1-XNixO3 Network Nanostructures as Bifunctional Oxygen Electrocatalysts. Electrochim. Acta 2019, 296, 945–953. https://doi.org/10.1016/j.electacta.2018.11.075.
(38) Tanaka, H.; Misono, M. Advances in Designing Perovskite Catalysts. Curr. Opin. Solid State Mater. Sci. 2001, 5 (5), 381–387. https://doi.org/10.1016/S1359-0286(01)00035-3.
(39) Adler, S. B. Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes. J. Electrochem. Soc. 1996, 143 (11), 3554. https://doi.org/10.1149/1.1837252.
(40) Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Shao-Horn, Y. Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode. J. Electrochem. Soc. 2010, 157 (8), B1263. https://doi.org/10.1149/1.3456630.
(41) OHNO, Y.; NAGATA, S.; SATO, H. Effect of Electrode Materials on the Properties of High-Temperature Solid Electrolyte Fuel Cells. Solid State Ionics 1981, 3–4, 439–442. https://doi.org/10.1016/0167-2738(81)90128-4.
(42) Wang, Y.; Cheng, H. P. Oxygen Reduction Activity on Perovskite Oxide Surfaces: A Comparative First-Principles Study of LaMnO3, LaFeO3, and LaCrO 3. J. Phys. Chem. C 2013, 117 (5), 2106–2112. https://doi.org/10.1021/jp309203k.
(43) Zhu, C.; Nobuta, A.; Nakatsugawa, I.; Akiyama, T. Solution Combustion Synthesis of LaMO3 (M = Fe, Co, Mn) Perovskite Nanoparticles and the Measurement of Their Electrocatalytic Properties for Air Cathode. Int. J. Hydrogen Energy 2013, 38 (30), 13238–13248. https://doi.org/10.1016/j.ijhydene.2013.07.113.
(44) Zhang, D.; Song, Y.; Du, Z.; Wang, L.; Li, Y.; Goodenough, J. B. Active LaNi1-XFexO3 Bifunctional Catalysts for Air Cathodes in Alkaline Media. J. Mater. Chem. A 2015, 3 (18), 9421–9426. https://doi.org/10.1039/c5ta01005e.
(45) Menzel, N.; Ortel, E.; Kraehnert, R.; Strasser, P. Electrocatalysis Using Porous Nanostructured Materials. ChemPhysChem 2012, 13 (6), 1385–1394. https://doi.org/10.1002/cphc.201100984.
(46) Zhou, W.; Zhao, M.; Liang, F.; Smith, S. C.; Zhu, Z. High Activity and Durability of Novel Perovskite Electrocatalysts for Water Oxidation. Mater. Horizons 2015, 2 (5), 495–501. https://doi.org/10.1039/c5mh00096c.
(47) Shimizu, Y.; Uemura, K.; Matsuda, H.; Miura, N.; Yamazoe, N. Bi‐Functional Oxygen Electrode Using Large Surface Area La 1 − x Ca x CoO 3 for Rechargeable Metal‐Air Battery . J. Electrochem. Soc. 2019, 137 (11), 3430–3433. https://doi.org/10.1149/1.2086234.
(48) Zhang, K.; Ge, L.; Ran, R.; Shao, Z.; Liu, S. Synthesis, Characterization and Evaluation of Cation-Ordered LnBaCo2O5+δ as Materials of Oxygen Permeation Membranes and Cathodes of SOFCs. Acta Mater. 2008, 56 (17), 4876–4889. https://doi.org/10.1016/j.actamat.2008.06.004.
(49) Chen, T.; Pang, S.; Shen, X.; Jiang, X.; Wang, W. Evaluation of Ba-Deficient PrBa1-XFe2O5+δ Oxides as Cathode Materials for Intermediateerature Solid Oxide Fuel Cells. RSC Adv. 2016, 6 (17), 13829–13836. https://doi.org/10.1039/c5ra19555a.
(50) Shlyakhtina, A. V.; Abrantes, J. C. C.; Gomes, E.; Shchegolikhin, A. N.; Vorobieva, G. A.; Maslakov, K. I.; Knotko, A. V.; Shcherbakova, L. G. Effect of Pr3+/Pr4+ Ratio on the Oxygen Ion Transport and Thermomechanical Properties of the Pyrochlore and Fluorite Phases in the ZrO2–Pr2O3 System. Int. J. Hydrogen Energy 2016, 41 (23), 9982–9992. https://doi.org/10.1016/j.ijhydene.2016.02.152.
(51) Pang, S.; Jiang, X.; Li, X.; Wang, Q.; Su, Z.; Zhang, Q. Highly Enhanced Electrochemical Performance of PrBa0.92Co2O5+δ Cathode by Introducing Ba Cationic-Deficiency. Int. J. Hydrogen Energy 2012, 37 (5), 3998–4001. https://doi.org/10.1016/j.ijhydene.2011.11.095.
(52) Christopher, B.; Rao, A.; Deka, U.; Prasad K, S.; Okram, G. S.; Sanjeev, G.; Chandra Petwal, V.; Verma, V. P.; Dwivedi, J. Electrical, Thermal and Magnetic Studies on 7.5 MeV Electron Beam Irradiated PrCoO3 Polycrystalline Samples. Phys. B Condens. Matter 2018, 540 (April), 26–32. https://doi.org/10.1016/j.physb.2018.04.026.
(53) New Trends in Intercalation Compounds for Energy Storage; Julien, C., Pereira-Ramos, J. P., Momchilov, A., Eds.; Springer Netherlands: Dordrecht, 2002. https://doi.org/10.1007/978-94-010-0389-6.
(54) Radaelli, P.; Iannone, G.; Marezio, M. Structural Effects on the Magnetic and Transport Properties of Perovskite 0.30). Phys. Rev. B - Condens. Matter Mater. Phys. 1997, 56 (13), 8265–8276. https://doi.org/10.1103/PhysRevB.56.8265.
(55) Shin, B.; Choi, S.; Tak, Y. Electrocatalytic Activity of Co-Based Perovskite Oxides for Oxygen Reduction and Evolution Reactions. Int. J. Electrochem. Sci. 2016, 11 (7), 5900–5908. https://doi.org/10.20964/2016.07.68.
(56) Cheng, X.; Fabbri, E.; Nachtegaal, M.; Castelli, I. E.; El Kazzi, M.; Haumont, R.; Marzari, N.; Schmidt, T. J. Oxygen Evolution Reaction on La1-XSrxCoO3 Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties. Chem. Mater. 2015, 27 (22), 7662–7672. https://doi.org/10.1021/acs.chemmater.5b03138.
(57) Fu, X.; Liu, J.; Wan, Y.; Zhang, X.; Meng, F.; Liu, J. Preparation of a Leaf-like CdS Micro-/Nanostructure and Its Enhanced Gas-Sensing Properties for Detecting Volatile Organic Compounds. J. Mater. Chem. 2012, 22 (34), 17782–17791. https://doi.org/10.1039/c2jm33352j.
(58) Fierro, J. L. G.; Peña, M. A.; González Tejuca, L. An XPS and Reduction Study of PrCoO3. J. Mater. Sci. 1988, 23 (3), 1018–1023. https://doi.org/10.1007/BF01154005.
(59) Mott, N. F.; Peierls, R. Discussion of the Paper by de Boer and Verwey. Proc. Phys. Soc. 1937, 49 (4S), 72–73. https://doi.org/10.1088/0959-5309/49/4S/308.
(60) Mott, N. F. The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals. Proc. Phys. Soc. Sect. A 1949, 62 (7), 416–422. https://doi.org/10.1088/0370-1298/62/7/303.
(61) Yeo, B. S.; Bell, A. T. Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen. J. Am. Chem. Soc. 2011, 133 (14), 5587–5593. https://doi.org/10.1021/ja200559j.
(62) Lee, H.; Gwon, O.; Choi, K.; Zhang, L.; Zhou, J.; Park, J.; Yoo, J. W.; Wang, J. Q.; Lee, J. H.; Kim, G. Enhancing Bifunctional Electrocatalytic Activities via Metal D-Band Center Lift Induced by Oxygen Vacancy on the Subsurface of Perovskites. ACS Catal. 2020, 10 (8), 4664–4670. https://doi.org/10.1021/acscatal.0c01104.
(63) De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What Would It Take for Renewably Powered Electrosynthesis to Displace Petrochemical Processes? Science (80-. ). 2019, 364 (6438), eaav3506. https://doi.org/10.1126/science.aav3506.
(64) Tang, C.; Gan, L.; Zhang, R.; Lu, W.; Jiang, X.; Asiri, A. M.; Sun, X.; Wang, J.; Chen, L. Ternary Fe x Co 1– x P Nanowire Array as a Robust Hydrogen Evolution Reaction Electrocatalyst with Pt-like Activity: Experimental and Theoretical Insight. Nano Lett. 2016, 16 (10), 6617–6621. https://doi.org/10.1021/acs.nanolett.6b03332.
(65) Zhang, X.; Zhang, S.; Li, J.; Wang, E. One-Step Synthesis of Well-Structured NiS–Ni 2 P 2 S 6 Nanosheets on Nickel Foam for Efficient Overall Water Splitting. J. Mater. Chem. A 2017, 5 (42), 22131–22136. https://doi.org/10.1039/C7TA05285E.
(66) Shi, H.; Liang, H.; Ming, F.; Wang, Z. Efficient Overall Water-Splitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres. Angew. Chemie Int. Ed. 2017, 56 (2), 573–577. https://doi.org/10.1002/anie.201610211.
(67) Solmaz, R.; Gündoğdu, A.; Döner, A.; Kardaş, G. The Ni-Deposited Carbon Felt as Substrate for Preparation of Pt-Modified Electrocatalysts: Application for Alkaline Water Electrolysis. Int. J. Hydrogen Energy 2012, 37 (11), 8917–8922. https://doi.org/10.1016/j.ijhydene.2012.03.008.
(68) Morales-Guio, C. G.; Stern, L.-A.; Hu, X. Nanostructured Hydrotreating Catalysts for Electrochemical Hydrogen Evolution. Chem. Soc. Rev. 2014, 43 (18), 6555. https://doi.org/10.1039/C3CS60468C.
(69) Luo, F.; Zhang, Q.; Yu, X.; Xiao, S.; Ling, Y.; Hu, H.; Guo, L.; Yang, Z.; Huang, L.; Cai, W.; Cheng, H. Palladium Phosphide as a Stable and Efficient Electrocatalyst for Overall Water Splitting. Angew. Chemie Int. Ed. 2018, 57 (45), 14862–14867. https://doi.org/10.1002/anie.201810102.
(70) Wang, J.; Zhong, H.; Wang, Z.; Meng, F.; Zhang, X. Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-Sulfide Sheets as an Efficient Electrode for Overall Water Splitting. ACS Nano 2016, 10 (2), 2342–2348. https://doi.org/10.1021/acsnano.5b07126.
(71) Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; Garcia-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; Garcia de Arquer, F. P.; Dinh, C. T.; Fan, F.; Yuan, M.; Yassitepe, E.; Chen, N.; Regier, T.; Liu, P.; Li, Y.; De Luna, P.; Janmohamed, A.; Xin, H. L.; Yang, H.; Vojvodic, A.; Sargent, E. H. Homogeneously Dispersed Multimetal Oxygen-Evolving Catalysts. Science (80-. ). 2016, 352 (6283), 333–337. https://doi.org/10.1126/science.aaf1525.
(72) Hirai, S.; Ohno, T.; Uemura, R.; Maruyama, T.; Furunaka, M.; Fukunaga, R.; Chen, W.-T.; Suzuki, H.; Matsuda, T.; Yagi, S. Ca 1−x Sr x RuO 3 Perovskite at the Metal–Insulator Boundary as a Highly Active Oxygen Evolution Catalyst. J. Mater. Chem. A 2019, 7 (25), 15387–15394. https://doi.org/10.1039/C9TA03789F.
(73) Huang, S.-J.; Muneeb, A.; Sabhapathy, P.; Sheelam, A.; Bayikadi, K. S.; Sankar, R. Tailoring the Co 4+ /Co 3+ Active Sites in a Single Perovskite as a Bifunctional Catalyst for the Oxygen Electrode Reactions. Dalt. Trans. 2021. https://doi.org/10.1039/D0DT04333H.
(74) Lado, J. L.; Wang, X.; Paz, E.; Carbó-Argibay, E.; Guldris, N.; Rodríguez-Abreu, C.; Liu, L.; Kovnir, K.; Kolen’ko, Y. V. Design and Synthesis of Highly Active Al–Ni–P Foam Electrode for Hydrogen Evolution Reaction. ACS Catal. 2015, 5 (11), 6503–6508. https://doi.org/10.1021/acscatal.5b01761.
(75) Kibsgaard, J.; Jaramillo, T. F. Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. Angew. Chemie Int. Ed. 2014, 53 (52), 14433–14437. https://doi.org/10.1002/anie.201408222.
(76) Yang, Y. J.; Hu, X. Nanoporous Ni3S2 Film on Ni Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Electrolyte. Russ. J. Electrochem. 2019, 55 (2), 88–96. https://doi.org/10.1134/S1023193519010154.
(77) Escalera-López, D.; Niu, Y.; Yin, J.; Cooke, K.; Rees, N. V.; Palmer, R. E. Enhancement of the Hydrogen Evolution Reaction from Ni-MoS 2 Hybrid Nanoclusters. ACS Catal. 2016, 6 (9), 6008–6017. https://doi.org/10.1021/acscatal.6b01274.
(78) Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y.; Mallouk, T. E.; Terrones, M. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Acc. Chem. Res. 2015, 48 (1), 56–64. https://doi.org/10.1021/ar5002846.
(79) Kong, D.; Wang, H.; Lu, Z.; Cui, Y. CoSe 2 Nanoparticles Grown on Carbon Fiber Paper: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2014, 136 (13), 4897–4900. https://doi.org/10.1021/ja501497n.
(80) Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Porous C 3 N 4 Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution. ACS Nano 2015, 9 (1), 931–940. https://doi.org/10.1021/nn506701x.
(81) (France), A. des sciences; (France), C. national de la recherche scientifique. Comptes Rendus Hebdomadaires Des Séances de l’Académie Des Sciences. ; publiés avec le concours du Centre national de la recherche scientifique par MM. les secrétaires perpétuels : Paris :, 1835; Vol. t.1 (1835).
(82) Brec, R. Review on Structural and Chemical Properties of Transition Metal Phosphorous Trisulfides MPS3. Solid State Ionics 1986, 22 (1), 3–30. https://doi.org/10.1016/0167-2738(86)90055-X.
(83) Dziaugys, A.; Banys, J.; Macutkevic, J.; Sobiestianskas, R.; Vysochanskii, Y. Dipolar Glass Phase in Ferrielectrics: CuInP 2 S 6 and Ag 0.1 Cu 0.9 InP 2 S 6 Crystals. Phys. status solidi 2010, 207 (8), 1960–1967. https://doi.org/10.1002/pssa.200925346.
(84) Ismail, N.; El-Meligi, A. A.; Temerk, Y. M.; Madian, M. Synthesis and Characterization of Layered FePS3 for Hydrogen Uptake. Int. J. Hydrogen Energy 2010, 35 (15), 7827–7834. https://doi.org/10.1016/j.ijhydene.2010.05.061.
(85) GARD, P.; SOURISSEAU, C.; OUVRARD, G.; BREC, R. Infrared Study of Lithium Intercalated Phases in the LixFeS2 System (0 ⩽ x ⩽ 2). Characterization of a New Iron Disulfide. Solid State Ionics 1986, 20 (3), 231–238. https://doi.org/10.1016/0167-2738(86)90221-3.
(86) Mayorga-Martinez, C. C.; Sofer, Z.; Sedmidubský, D.; Huber, Š.; Eng, A. Y. S.; Pumera, M. Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties. ACS Appl. Mater. Interfaces 2017, 9 (14), 12563–12573. https://doi.org/10.1021/acsami.6b16553.
(87) Barj, M. Infrared Studies of Lithium Intercalation in the FePS3 and NiPS3 Layer-Type Compounds. Solid State Ionics 1983, 11 (2), 179–183. https://doi.org/10.1016/0167-2738(83)90054-1.
(88) Evans, J. S. O.; O’Hare, D.; Clement, R. The Structure of Co(.Eta.-C5H5)2+ and NMe4+ Intercalates of MnPS3: An X-Ray, Neutron-Diffraction, and Solid-State NMR Study. J. Am. Chem. Soc. 1995, 117 (16), 4595–4606. https://doi.org/10.1021/ja00121a017.
(89) Liu, J.; Li, X.-B.; Wang, D.; Lau, W.-M.; Peng, P.; Liu, L.-M. Diverse and Tunable Electronic Structures of Single-Layer Metal Phosphorus Trichalcogenides for Photocatalytic Water Splitting. J. Chem. Phys. 2014, 140 (5), 054707. https://doi.org/10.1063/1.4863695.
(90) Nathanson, M.; Kanhaiya, K.; Pryor, A.; Miao, J.; Heinz, H. Atomic-Scale Structure and Stress Release Mechanism in Core–Shell Nanoparticles. ACS Nano 2018, 12 (12), 12296–12304. https://doi.org/10.1021/acsnano.8b06118.
(91) Wang, S.; Xiao, B.; Shen, S.; Song, K.; Lin, Z.; Wang, Z.; Chen, Y.; Zhong, W. Cobalt Doping of FePS 3 Promotes Intrinsic Active Sites for the Efficient Hydrogen Evolution Reaction. Nanoscale 2020, 12 (27), 14459–14464. https://doi.org/10.1039/D0NR03819A.
(92) Zhang, J.; Wang, Y.; Zhang, C.; Gao, H.; Lv, L.; Han, L.; Zhang, Z. Self-Supported Porous NiSe2 Nanowrinkles as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustain. Chem. Eng. 2018, 6 (2), 2231–2239. https://doi.org/10.1021/acssuschemeng.7b03657.
(93) Mukherjee, D.; Austeria, P. M.; Sampath, S. Two-Dimensional, Few-Layer Phosphochalcogenide, FePS3: A New Catalyst for Electrochemical Hydrogen Evolution over Wide PH Range. ACS Energy Lett. 2016, 1 (2), 367–372. https://doi.org/10.1021/acsenergylett.6b00184.

QR CODE