簡易檢索 / 詳目顯示

研究生: 黃嵊朋
Sheng-Peng Huang
論文名稱: 基於都卜勒雷達與熱顯像儀的非接觸式多參數生理訊號量測系統
Non-Contact Multi-Parameter Physiological Signal Measurement System Based on Doppler Radar and Thermal Camera
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 林淵翔
林敬舜
吳晋賢
周迺寬
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 83
中文關鍵詞: 非接觸式生理訊號量測熱顯像儀都卜勒雷達影像處理心率呼吸率體表溫度
外文關鍵詞: Non-contact physiological signal measurement, Thermal camera, Doppler radar, Image processing, Pulse rate, Respiratory rate, Body temperature
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心率、呼吸率和體溫是人體重要的生理參數,監控上述幾項數值能幫助醫生診斷病患的生理狀態。近年來陸續有研究提出使用都卜勒雷達或熱顯像儀來進行非接觸式生理訊號量測,這兩個感測器不受環境光源和使用者膚色的影響,並且更有隱私性。然而,使用雷達量測心率可能會受到環境、隨機身體移動和呼吸訊號的諧波等干擾因素的影響,造成量測不準。此外,熱顯像儀的體溫量測的準確度會受到距離的影響。
    因此,本論文提出一套基於都卜勒雷達與熱顯像儀的非接觸式多參數生理訊號量測系統,將都卜勒雷達與熱顯像儀整合,提升心率、呼吸率和體溫量測的準確度。心率量測部分,使用都卜勒雷達的多通道訊號,並透過深度學習模型估測心率,藉由熱顯像儀的距離估計限制雷達的搜尋範圍,則可以減少環境雜訊的影響。呼吸率量測部分,使用都卜勒雷達與熱顯像儀量測人體呼吸時產生的移動訊號,透過計算多通道訊號的訊雜比以得到較準確的呼吸率。體溫量測部分,使用熱顯像儀量測皮膚表面的溫度,並透過都卜勒雷達量測精準的人體與感測器的距離,以選擇該距離最合適的熱顯像儀溫度校正公式計算出較準確的體溫。
    本論文的驗證分成離線實驗(實驗一)和即時實驗(實驗二)。實驗一分成訓練集與測試集,分別有9和4名受測者。實驗一的心率、呼吸率和體溫的量測結果,平均絕對誤差(MAE)/均方根誤差(RMSE)分別為4.67/5.93BPM、1.13/1.67 BPM和0.39/0.44°C。實驗二有5名受測者,心率、呼吸率和體溫的量測結果,MAE/RMSE分別為3.62/4.75 BPM、1.16/1.48 BPM和0.48/0.61°C。實驗結果顯示本論文藉由兩個感測器的整合可以提升量測準確度。


    Pulse rate, respiratory rate, and body temperature are key physiological parameters, and monitoring them aids in medical diagnosis. Recent research has explored the use of Doppler radar and thermal camera for non-contact physiological measurements. These sensors offer privacy and are unaffected by environmental lighting or skin color. However, radar-based pulse rate measurement can be disrupted by environmental noise, body movements, and respiratory signal harmonics. Additionally, temperature accuracy of thermal camera is influenced by distance.
    This thesis proposes a non-contact multi-parameter physiological signal measurement system based on Doppler radar and thermal camera to improve the accuracy of pulse rate, respiratory rate, and body temperature measurements. Pulse rate is estimated using multi-channel radar signals and a deep learning model. Limiting the radar's search range based on the thermal camera's distance estimation can reduce environmental noise interference. Respiratory rate is measured by detecting breathing movements with Doppler radar and thermal imaging, and is made more accurate by calculating the signal-to-noise ratio of multi-channel signals. Body temperature is measured by the thermal camera, with the radar providing distance data to apply the correct temperature correction formula for more accurate results.
    The thesis includes offline and real-time experiments. In the offline experiment, with 9 subjects in the training set and 4 in the test set, the mean absolute error (MAE)/root mean square error (RMSE) for pulse rate, respiratory rate, and body temperature were 4.67/5.93 BPM, 1.13/1.67 BPM, and 0.39/0.44°C, respectively. The real-time experiment, with 5 subjects, MAE/RMSE values are 3.62/4.75 BPM, 1.16/1.48 BPM, and 0.48/0.61°C. These results show that combining the two sensors can improve the accuracy.

    推薦書 i 審定書 ii 摘要 iii Abstract iv 致謝 v 目錄 vi 圖目錄 x 表目錄 xiii 第一章、 緒論 1 1.1 動機與目的 1 1.2 文獻探討 2 1.2.1 基於都卜勒雷達與熱顯像儀的非接觸式生理訊號量測方法 2 1.2.1.1 心率量測 2 1.2.1.2 呼吸率量測 4 1.2.1.3 體表溫度量測 7 1.3 相關論文與本論文比較 8 1.4 論文架構 10 第二章、 研究背景 11 2.1 FMCW雷達 (Frequency Modulated Continuous Wave Radar) 11 2.2 呼吸的定義 15 2.3 體溫的定義 15 2.4 深度學習的應用 16 第三章、 研究方法 18 3.1 系統介紹 18 3.1.1 都卜勒雷達(Doppler Radar) 18 3.1.2 熱顯像儀(Thermal Camera) 19 3.2 資料處理 20 3.3 雷達心率模型訓練(Radar Pulse Rate Model Training) 21 3.3.1 真實資料集 21 3.3.2 模擬資料集 21 3.3.3 模型架構與訓練環境 23 3.4 離線的熱顯像儀校正(Thermal Camera Calibration) 25 3.5 熱顯像儀訊號處理(Thermal Signal Processing) 28 3.5.1 人臉偵測與追蹤(Face Detection & Tracking) 28 3.5.2 感興趣區域定位(ROI Locating) 30 3.5.2.1 熱顯像儀距離估計 31 3.5.3 體表溫度訊號提取與處理(Body Temperature Signal Extraction & Processing) 33 3.5.4 呼吸率訊號提取(Respiratory Rate Signal Extraction) 33 3.6 雷達訊號處理(Radar Signal Processing) 36 3.6.1 雷達訊號提取(Radar Signal Extraction) 36 3.6.1.1 距離搜尋(Distance Searching) 36 3.6.1.2 相位計算(Phase Calculation) 39 3.6.1.3 相位解纏繞(Phase Unwrap) 40 3.6.1.4 相位微分(Phase Differentiation) 41 3.6.1.5 帶通濾波器(Band Pass Filter) 42 3.6.1.6 標準化(Standardization) 43 3.6.2 心率訊號處理(Pulse Rate Signal Processing) 45 3.7 呼吸率訊號選擇(RR Signal Selection) 46 3.7.1 呼吸率計算(Respiratory Rate Signal Processing) 46 3.7.2 訊雜比計算(SNR Calculation) 47 3.8 使用者介面 48 第四章、 實驗方法與結果討論 50 4.1 實驗設計 50 4.1.1 生理訊號量測 50 4.1.2 生理訊號驗證方法 52 4.1.2.1 心率驗證裝置 52 4.1.2.2 呼吸率驗證裝置 52 4.1.2.3 體溫驗證裝置 53 4.1.2.4 評估函式 54 4.2 實驗結果 55 4.2.1 實驗一 55 4.2.1.1 實驗一心率量測結果 55 4.2.1.2 實驗一呼吸率量測結果 57 4.2.1.3 實驗一體溫量測結果 59 4.2.2 實驗二 61 4.2.2.1 實驗二心率量測結果 61 4.2.2.2 實驗二呼吸率量測結果 61 4.2.2.3 實驗二體溫量測結果 62 4.3 結果討論 63 4.3.1 與相關論文之結果比較 63 4.3.2 心率使用心率模型和傳統演算法之比較 66 4.3.3 心率使用熱顯像儀距離之比較 69 4.3.4 心率使用模擬訓練集之比較 70 4.3.5 呼吸率使用SNR之比較 71 4.3.6 體溫使用雷達距離和熱顯像儀距離之比較 73 4.3.7 實驗結果分析 74 第五章、 結論與未來展望 75 參考文獻 76

    [1] K. H. Yu, A. L. Beam, and I. S. Kohane, "Artificial Intelligence in Healthcare," Nature Biomedical Engineering, vol. 2, no. 10, pp. 719-731, Oct 2018, doi: 10.1038/s41551-018-0305-z.
    [2] J. Kellett and F. Sebat, "Make Vital Signs Great Again - A Call for Action," European Journal of Internal Medicine, vol. 45, pp. 13-19, Nov 2017, doi: 10.1016/j.ejim.2017.09.018.
    [3] T. Yilmaz, R. Foster, and Y. Hao, "Detecting Vital Signs with Wearable Wireless Sensors," Sensors (Basel), vol. 10, no. 12, pp. 10837-62, 2010, doi: 10.3390/s101210837.
    [4] J. F. Thayer, S. S. Yamamoto, and J. F. Brosschot, "The Relationship of Autonomic Imbalance, Heart Rate Variability and Cardiovascular Disease Risk Factors," International Journal of Cardiology, vol. 141, no. 2, pp. 122-31, May 28 2010, doi: 10.1016/j.ijcard.2009.09.543.
    [5] M. Orini, J. L. Flores, N. Chaturvedi, and A. Hughes, "Wearable-Derived Long-Term Heart Rate Variability Predicts Major Adverse Cardiovascular Events in Middle Aged Individuals without Previous Cardiovascular Disease," 2023 Computing in Cardiology Conference (CinC), 2023, doi: 10.22489/CinC.2023.177.
    [6] M. A. Cretikos, R. Bellomo, K. Hillman, J. Chen, S. Finfer, and A. Flabouris, "Respiratory Rate: The Neglected Vital Sign," The Medical Journal of Australia, vol. 188, pp. 657-9, 2008.
    [7] I. Campbell, "Body Temperature and Its Regulation," Anaesthesia & Intensive Care Medicine, vol. 9, no. 6, pp. 259-263, 2008, doi: 10.1016/j.mpaic.2008.04.009.
    [8] S. Leem, F. Khan, and S. Cho, "Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB Radar for Intended Use in Car Crash Prevention," Sensors (Basel), vol. 17, no. 6, May 30 2017, doi: 10.3390/s17061240.
    [9] S. M. M. Islam, N. Motoyama, S. Pacheco, and V. M. Lubecke, "Non-Contact Vital Signs Monitoring for Multiple Subjects Using a Millimeter Wave FMCW Automotive Radar," 2020 IEEE/MTT-S International Microwave Symposium (IMS), pp. 783-786, 2020, doi: 10.1109/IMS30576.2020.9223838.
    [10] M. Villarroel et al., "Continuous Non-Contact Vital Sign Monitoring in Neonatal Intensive Care Unit," Healthcare Technology Letters, vol. 1, no. 3, pp. 87-91, Sep 2014, doi: 10.1049/htl.2014.0077.
    [11] K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, "An X-Band Microwave Life-Detection System," IEEE Transactions on Biomedical Engineering, vol. BME-33, pp. 697-701, July 1986, doi: 10.1109/TBME.1986.325760.
    [12] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, "A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 2046-2060, 2013, doi: 10.1109/tmtt.2013.2256924.
    [13] V. Nguyen, A. Q. Javaid, and M. A. Weitnauer, "Harmonic Path (HAPA) Algorithm for Non-Contact Vital Signs Monitoring with IR-UWB Radar," 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 146-149, 2013.
    [14] L. Ren, Y. S. Koo, H. Wang, Y. Wang, Q. Liu, and A. E. Fathy, "Noncontact Multiple Heartbeats Detection and Subject Localization Using UWB Impulse Doppler Radar," IEEE Microwave and Wireless Components Letters, vol. 25, no. 10, pp. 690-692, 2015, doi: 10.1109/lmwc.2015.2463214.
    [15] F. Khan, A. Ghaffar, N. Khan, and S. H. Cho, "An Overview of Signal Processing Techniques for Remote Health Monitoring Using Impulse Radio UWB Transceiver," Sensors (Basel), vol. 20, no. 9, Apr 27 2020, doi: 10.3390/s20092479.
    [16] M. Mercuri, Y. H. Liu, I. Lorato, T. Torfs, A. Bourdoux, and C. Van Hoof, "Frequency-Tracking CW Doppler Radar Solving Small-Angle Approximation and Null Point Issues in Non-Contact Vital Signs Monitoring," IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 3, pp. 671-680, Jun 2017, doi: 10.1109/TBCAS.2016.2647560.
    [17] J. M. Muñoz-Ferreras, J. Wang, Z. Peng, C. Li, and R. Gómez-García, "FMCW-Radar-Based Vital-Sign Monitoring of Multiple Patients," 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), vol. 1, pp. 1-3, May 2019.
    [18] H. I. Choi, H. Song, and H. C. Shin, "Target Range Selection of FMCW Radar for Accurate Vital Information Extraction," IEEE Access, vol. 9, pp. 1261-1270, 2021, doi: 10.1109/access.2020.3043013.
    [19] M. Alizadeh, G. Shaker, J. C. M. D. Almeida, P. P. Morita, and S. Safavi-Naeini, "Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar," IEEE Access, vol. 7, pp. 54958-54968, 2019, doi: 10.1109/access.2019.2912956.
    [20] K. Mostov, E. Liptsen, and R. Boutchko, "Medical Applications of Shortwave FM Radar:Remote Monitoring of Cardiac and Respiratory Motion," Medical Physics, vol. 37, no. 3, pp. 1332-8, Mar 2010, doi: 10.1118/1.3267038.
    [21] Y. Wang, X. Wang, X. Lan, and Z. Han, "Vital Signs Monitoring Using FMCW Millimeter-Wave Sensor via Simulated Annealing MUSIC Algorithm," 2022 5th International Conference on Information Communication and Signal Processing (ICICSP), pp. 429-434, 2022, doi: 10.1109/icicsp55539.2022.10050643.
    [22] Y. Hu and T. Toda, "Remote Vital Signs Measurement of Indoor Walking Persons Using mm-Wave FMCW Radar," IEEE Access, vol. 10, pp. 78219-78230, 2022, doi: 10.1109/access.2022.3193789.
    [23] H. Y. Chang, C. H. Hsu, and W. H. Chung, "Fast Acquisition and Accurate Vital Sign Estimation with Deep Learning-Aided Weighted Scheme Using FMCW Radar," 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), pp. 1-6, 2022, doi: 10.1109/VTC2022-Spring54318.2022.9860799.
    [24] N. Sun, M. Garbey, A. Merla, and I. Pavlidis, "Imaging the Cardiovascular Pulse," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 2, pp. 416-421, 2005, doi: 10.1109/CVPR.2005.184.
    [25] M. Garbey, N. Sun, A. Merla, and I. Pavlidis, "Contact-Free Measurement of Cardiac Pulse Based on the Analysis of Thermal Imagery," IEEE Transactions on Biomedical Engineering, vol. 54, no. 8, pp. 1418-26, Aug 2007, doi: 10.1109/TBME.2007.891930.
    [26] C. Barbosa Pereira, M. Czaplik, V. Blazek, S. Leonhardt, and D. Teichmann, "Monitoring of Cardiorespiratory Signals Using Thermal Imaging: A Pilot Study on Healthy Human Subjects," Sensors (Basel), vol. 18, no. 5, May 13 2018, doi: 10.3390/s18051541.
    [27] K. Wang, Y. Zhao, and J. Fang, "Separation and Denoising of Respiratory Heartbeat Signals Based on Millimeter-Wave Radar," 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), pp. 950-954, 2022, doi: 10.1109/icpics55264.2022.9873630.
    [28] C. Li, X. Yu, C. M. Lee, D. Li, L. Ran, and J. Lin, "High-Sensitivity Software-Configurable 5.8-GHz Radar Sensor Receiver Chip in 0.13-μm CMOS for Noncontact Vital Sign Detection," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1410-1419, 2010, doi: 10.1109/tmtt.2010.2042856.
    [29] J. Fei and I. Pavlidis, "Thermistor at a Distance: Unobtrusive Measurement of Breathing," IEEE Transactions on Biomedical Engineering, vol. 57, no. 4, pp. 988-98, Apr 2010, doi: 10.1109/TBME.2009.2032415.
    [30] A. K. Abbas, K. Heimann, K. Jergus, T. Orlikowsky, and S. Leonhardt, "Neonatal Non-Contact Respiratory Monitoring Based on Real-Time Infrared Thermography," Biomedical Engineering Online, vol. 10, p. 93, Oct. 2011, doi: 10.1186/1475-925X-10-93.
    [31] G. F. Lewis, R. G. Gatto, and S. W. Porges, "A Novel Method for Extracting Respiration Rate and Relative Tidal Volume From Infrared Thermography," Psychophysiology, vol. 48, no. 7, pp. 877-87, Jul 2011, doi: 10.1111/j.1469-8986.2010.01167.x.
    [32] C. B. Pereira, X. Yu, M. Czaplik, R. Rossaint, V. Blazek, and S. Leonhardt, "Remote Monitoring of Breathing Dynamics Using Infrared Thermography," Biomedical Optics Express, vol. 6, no. 11, pp. 4378-94, Nov 1 2015, doi: 10.1364/BOE.6.004378.
    [33] C. B. Pereira et al., "Noncontact Monitoring of Respiratory Rate in Newborn Infants Using Thermal Imaging," IEEE Transactions on Biomedical Engineering, vol. 66, no. 4, pp. 1105-1114, Apr 2019, doi: 10.1109/TBME.2018.2866878.
    [34] 林家瑋, "基於熱顯像儀的非接觸式多參數生理信號量測系統," 國立臺灣科技大學碩士論文, 2020.
    [35] 賴聖傑, "基於RGB相機與熱顯像儀的非接觸式多參數生理訊號量測系統," 國立臺灣科技大學碩士論文, 2022.
    [36] M. Mozafari, J. R. Green, A. J. Law, and R. A. Goubran, "Respiration Rate Estimation from Thermal Video of Masked and Unmasked Individuals Using Tensor Decomposition," 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1-5, 2022, doi: 10.1109/i2mtc48687.2022.9806557.
    [37] H. Metzmacher, D. Wölki, C. Schmidt, J. Frisch, and C. van Treeck, "Real-Time Human Skin Temperature Analysis Using Thermal Image Recognition for Thermal Comfort Assessment," Energy and Buildings, vol. 158, pp. 1063-1078, 2018, doi: 10.1016/j.enbuild.2017.09.032.
    [38] D. Li, C. C. Menassa, and V. R. Kamat, "Non-Intrusive Interpretation of Human Thermal Comfort Through Analysis of Facial Infrared Thermography," Energy and Buildings, vol. 176, pp. 246-261, 2018, doi: 10.1016/j.enbuild.2018.07.025.
    [39] A. Ghahramani, G. Castro, B. Becerik-Gerber, and X. Yu, "Infrared Thermography of Human Face for Monitoring Thermoregulation Performance and Estimating Personal Thermal Comfort," Building and Environment, vol. 109, pp. 1-11, 2016, doi: 10.1016/j.buildenv.2016.09.005.
    [40] Y. C. Zhang, Y. M. Chen, X. B. Fu, and C. Luo, "A Method for Reducing the Influence of Measuring Distance on Infrared Thermal Imager Temperature Measurement Accuracy," Applied Thermal Engineering, vol. 100, pp. 1095-1101, 2016, doi: 10.1016/j.applthermaleng.2016.02.119.
    [41] W. Minkina and D. Klecha, "Atmospheric Transmission Coefficient Modelling in the Infrared for Thermovision Measurements," Journal of Sensors and Sensor Systems, vol. 5, no. 1, pp. 17-23, 2016, doi: 10.5194/jsss-5-17-2016.
    [42] 彭聖智, "基於熱顯像儀的非接觸式多參數生理信號量測系統於放射線治療的應用," 國立臺灣科技大學碩士論文, 2021.
    [43] M. Arsalan, A. Santra, and C. Will, "Improved Contactless Heartbeat Estimation in FMCW Radar via Kalman Filter Tracking," IEEE Sensors Letters, vol. 4, no. 5, pp. 1-4, 2020, doi: 10.1109/lsens.2020.2983706.
    [44] S. Hazra et al., "Robust Radar-Based Vital Sensing With Adaptive Sinc Filtering and Random Body Motion Rejections," IEEE Sensors Letters, vol. 7, no. 5, pp. 1-4, 2023, doi: 10.1109/lsens.2023.3266237.
    [45] 吳冠儒, "在非穩態雜波環境中使用基於VMD演算法提高心率估計準確度應用於FMCW雷達系統," 國立成功大學電機工程學系碩士論文, 2021.
    [46] T. Huang. "調頻連續波雷達 Frequency Modulated Continuous Wave (FMCW Radars): 測距/測速原理." https://chih-sheng-huang821.medium.com/%E8%AA%BF%E9%A0%BB%E9%80%A3%E7%BA%8C%E6%B3%A2%E9%9B%B7%E9%81%94-frequency-modulated-continuous-wave-fmcw-radars-%E6%B8%AC%E8%B7%9D-%E6%B8%AC%E9%80%9F%E5%8E%9F%E7%90%86-1-2-cc6ac4b501b4. (accessed April. 30, 2024).
    [47] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, "Range Correlation and I/ Q Performance Benefits in Single-Chip Silicon Doppler Radars for Noncontact Cardiopulmonary Monitoring," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 838-848, 2004, doi: 10.1109/tmtt.2004.823552.
    [48] A. Abdelhamid. "Mercy of Allah: Adaptation to Weather Extremes." https://aboutislam.net/muslim-issues/science-muslim-issues/mercy-allah-adaptation-weather-extremes/?utm_content=buffer17a1c&utm_medium=social&utm_source=pinterest.com&utm_campaign=buffer. (accessed April. 30, 2024).
    [49] W. Jun, "A Speaker Recognition System Based on MFCC and SCHMM," Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012), pp. 88-92, 2012, doi: 10.1049/cp.2012.1868.
    [50] B. Sisman, J. Yamagishi, S. King, and H. Li, "An Overview of Voice Conversion and Its Challenges: From Statistical Modeling to Deep Learning," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, pp. 132-157, 2021, doi: 10.1109/taslp.2020.3038524.
    [51] S. M. Rafi and S. Akthar, "ECG Classification using a Hybrid Deeplearning Approach," 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), pp. 302-305, 2021, doi: 10.1109/icais50930.2021.9395897.
    [52] Fluke. "Fluke Precision Infrared Calibrators 4180." https://www.instrumart.com/assets/Fluke-Calibration-4180-4181-Datasheet.pdf. (accessed April. 30, 2024).
    [53] J. H. Lee, S. J. H. Shin, and C. L. Istook, "Analysis of Human Head Shapes in the United States," International Journal of Human Ecology, vol. 7, pp. 77-83, 2006.
    [54] Vernier. "Go Direct® Respiration Belt." https://www.vernier.com/product/go-direct-respiration-belt. (accessed April. 30, 2024).

    無法下載圖示 全文公開日期 2029/08/26 (校內網路)
    全文公開日期 2029/08/26 (校外網路)
    全文公開日期 2029/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE