簡易檢索 / 詳目顯示

研究生: 李宥慶
You-Chin Lin
論文名稱: 應用影像處理技術於喉內視鏡影片之腫瘤自動偵測系統開發與研究
Research and Development of Automatic Tumor Detection System Using Image Processing Techniques in Laryngoscope Video
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
朱永祥
Yueng-Hsiang Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 109
中文關鍵詞: 喉內視鏡色彩空間模型索貝爾邊緣檢測(Sobel Edge Detection)K均值演算法(K-Means)分水嶺演算法(Watershed)模糊C均值演算法(Fuzzy C-MeansFCM)主動輪廓法腫瘤紋理特徵辨識
外文關鍵詞: color space model, watershed, active contour method, Tumor texture features Identification
相關次數: 點閱:466下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 耳鼻喉醫師在用喉內視鏡檢查病患喉部時,利用幾何特徵、顏色及紋理作為臨床判斷腫瘤之依據,本研究將之結合醫學影像處理技術,能自動偵測動態影片當中腫瘤的位置,並同時進行圈選提示,能提供醫生更多病理資訊。
    喉內視鏡拍攝的影片,除正常清晰影像,部分影像易受口腔唾液、舌根振動及食物殘渣影響,造成影像模糊,本研究利用K均值演算法(K-Means)、計算模糊影像的平滑度及熵值,並以懸壅垂遮罩(Uvula Mask)作為排除喉內視鏡拍攝時碰觸懸壅垂的影像,進行正常影像篩選;且聲門及會厭影像具有明顯幾何及明亮度特徵可進行影像分割,並依此兩區域相關位置,將喉部分為舌根、聲門、會厭及下咽四個區域,並進行腫瘤圈選。
    舌根區的腫瘤,利用其邊緣具有影像灰階明顯之變化,進行索貝爾邊緣檢測(Sobel Edge Detection)運算形成梯度影像,並結合分水嶺(Watershed)演算法,有效圈選腫瘤輪廓;下咽及會厭區的腫瘤,利用L*a*b*色彩空間進行分割,轉換為灰階影像、進行二值化並結合形態學找出腫瘤部位、利用主動輪廓法得到腫瘤輪廓,計算腫瘤的平滑度、相關性及熵值三種特徵,進行下咽與會厭兩區域的分類;聲門區的腫瘤,依聲帶周圍組織顏色特徵,以模糊C均值演算法(Fuzzy C-Means, FCM)進行影像分割,得出聲門與聲帶腫瘤之影像,藉除去聲門影像,有效圈選聲帶腫瘤輪廓,完成喉部腫瘤圈選。
    喉內視鏡拍攝影片為每秒30張影像,利用經已偵測之喉部腫瘤系統處理影像,將腫瘤灰階具有幾何形狀尖銳邊緣做索貝爾邊緣檢測運算,形成梯度影像得角點(Corner)特徵,可一次處理10張影像進行圈選腫瘤,相較於傳統處理方式一次只處理一張影像,能快速準確達成圈選腫瘤目標。
    本研究以三軍總醫院耳鼻喉頭頸外科部所提供70個病患之喉內視鏡所拍攝動態影片,經與醫師進行本自動偵測喉部腫瘤系統臨床測試驗證,準確辨識率達95.7%,若以病患喉內視鏡所拍攝影片時間為15秒、450張影像為例,本系統處理時間約3分鐘,此結果經臨床測試,確可有效輔助醫生提高診斷效率,減少人為誤判率。


    When Otorhinolaryngology doctor uses Laryngoscope to diagnose the patient's larynx, the detection of tumor is based on the geometric features, color and texture. It is combined with medical image processing techniques in this study to detect the location of tumor in dynamic video automatically, and it is circled as prompt, providing the doctor with more information.
    Besides normal sharp images, some images taken by laryngoscope are likely to be influenced by saliva, radix linguae vibration and food residue, resulting in image blurring. This study uses K-Means Algorithm to calculate the smoothness and entropy of fuzzy image, and uses Uvula Mask pattern to remove the images touching uvula when laryn-goscope is shooting to screen normal images; and the glottis and epiglottis images have apparent geometric and brightness features for image segmentation. According to the relevant positions of the two areas, the larynx is divided into radix linguae, glottis, epi-glottis and hypopharynx areas.
    For the tumor in the radix linguae area, the apparent change in image gray level of the edge is used for Sobel Edge Detection Algorithm operation to form the gradient image, combined with Watershed Algorithm to circle the tumor contour effectively. The tumor in the hypopharynx and epiglottis areas is segmented by using L*a*b* color space, con-verted into gray image, binarized and combined with morphology to find the tumor po-sition. The tumor contour is obtained by Active Contour Algorithm, the smoothness, correlation and entropy of tumor are calculated. The hypopharynx and epiglottis areas are classified. The tumor in the vocal area is segmented by Fuzzy C-Means (FCM) ac-cording to the color feature of tissues around the vocal fold, the images of glottis and vocal fold tumors are obtained, the glottis image is removed to circle the vocal fold tumor contour effectively.
    The Laryngoscope can take 30 pictures per second, which are then processed by the verified laryngeal tumor system. Those tumors that are shown to have sharp geometric edges according to the gray level are subject to the Sobel Edge Detection Algorithm. A gradient image is generated in the process, hence the Corner characteristics. In this way, it is possible to process ten images at a time so that tumors could be picked out. Compared with the traditional process in which only one image is processed at a time, the target tumor could be identified in a more rapid and accurate manner.
    The dynamic video of 70 patients by laryngoscope provided by Department of Otorhinolaryngology - Head and Neck Surgery, Tri-Service General Hospital is used for clinical testing verification of this automatic larynx tumor detection system, the accurate recognition rate is 95.7%. If the video length of patient Laryngoscope is 15 seconds, 450 images. The processing time of this system is about 3 minutes. This result is tested clin-ically, actually assisting the doctors to increase the diagnosis efficiency and to reduce human misrecognition rate.

    第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.2.1 聲帶疾病檢測 3 1.2.2 病理特徵選取 4 1.2.3 影像追蹤 6 1.3 研究目的 8 1.4 論文基本架構 8 第2章 人類喉部結構功能與疾病 11 2.1 人類喉嚨構造 11 2.2 人類喉嚨功能 13 2.3 腫瘤之病理形態 14 2.3.1 腫瘤組織的病理形態 16 2.3.2 腫瘤部位與分期 19 第3章 影像相關理論 23 3.1 影像色彩空間轉換 23 3.1.1 RGB色彩空間 23 3.1.2 YCbCr色彩空間 24 3.1.3 L*a*b*色彩空間 25 3.1.4 色彩空間討論 26 3.2 影像增強 27 3.2.1 負片轉換 28 3.2.2 中值濾波 28 3.2.3 對比度自適應直方圖等化 29 3.2.4 索貝爾邊緣檢測 30 3.3 影像分割 31 3.3.1 Otsu's演算法 32 3.3.2 主動輪廓法 35 3.3.3 分水嶺演算法 36 3.3.4 K-Means演算法 39 3.3.5 模糊C均值演算法 40 3.3.6 最小特徵角點 41 3.4 形態學 42 3.4.1 侵蝕與膨脹 43 3.4.2 開放運算與封閉運算 44 3.4.3 標記連通成分 46 3.4.4 連通 47 3.5 紋理特徵 48 3.5.1 面積與長寬比 48 3.5.2 似橢圓形比例 48 3.5.3 似矩形比例 49 3.5.4 質心 49 3.5.5 熵值 50 3.5.6 平滑度 50 3.5.7 相關性 51 第4章 喉部腫瘤偵測系統 52 4.1 喉部腫瘤偵測系統 52 4.2 影像環境篩選 53 4.3 結構特徵分析 54 4.3.1. 會厭結構 55 4.3.2. 聲門結構 57 4.4 腫瘤病灶之探討 59 4.4.1. 舌根腫瘤 59 4.4.2. 聲帶腫瘤 61 4.4.3. 下咽與會厭之腫瘤 62 第5章 實驗結果與分析 65 5.1. 實驗樣本與軟硬體設備 65 5.1.1. 實驗樣本影片 65 5.1.2. 硬體設備 65 5.1.3. 軟體設備 67 5.2. 影像處理流程 67 5.2.1. 淘汰不適合之影像 68 5.2.2. 會厭結構特徵 71 5.2.3. 聲門結構特徵 72 5.2.4. 舌根腫瘤擷取 78 5.2.5. 下咽與會厭腫瘤之腫瘤擷取 80 5.2.6. 聲帶腫瘤擷取 84 5.3. 系統運算效率 85 5.4. 實驗結果數據 86 第6章 結論 87 參考文獻 88

    [1] 衛生福利部,「中華民國103年版衛生福利年報」,衛生福利部,第15-16頁,臺灣台北,2014。
    [2] Study Blue, https://goo.gl/Q1YQqH, 2014。
    [3] 王棨德,「圖說聲音障礙常見疾病」,健康世界,第37頁,臺灣台北,2009。
    [4] Johns, M. M., “Update on the etiology, diagnosis, and treatment of vocal fold nodules, polyps, and cysts,” Current Opinion in Oto-laryngology and Head and Neck Surgery, Vol. 11, Issue 6, pp. 456-461, 2003.
    [5] Wallis, L., Jackson, M. C., Holland, W. and Giraldo, A., “Vocal fold nodule vs. vocal fold polyp: answer from surgical pathologist and voice pathologist point of view,” Journal of Voice, Vol. 18, Issue 1, pp. 125-129, 2004.
    [6] Ananthapadmanabha, T. V. and Yegnanarayana, B., “Epoch ex-traction from linear prediction residual for identification of closed glottis interval,” Acoustics, Speech and Signal Processing, Vol. 27, Issue 4, pp. 309-319, 1979.
    [7] Ilgner, J. F., Palm, C., Schütz, A. G., Spitzer, K., Westhofen, M. and Lehmann, T. M., “Colour texture analysis for quantitative laryngoscopy,” Acta Oto-Laryngologica, Vol. 123, Issue 6, pp. 730-734, 2003.
    [8] Mendez, A., Garcia, B., Ruiz, I. and Iturricha, I., “Glottal area segmentation without initialization using Gabor filters,” In Signal Processing and Information Technology, Sarajevo, pp. 18-22, December 16-19, 2008.
    [9] Zhang, Y., Bieging, E., Tsui, H. and Jiang, J. J., “Efficient and ef-fective extraction of vocal fold vibratory patterns from high-speed digital imaging,” Journal of Voice, Vol. 24, Issue 1, pp. 21-29, 2010.
    [10] Mendez, A., El, Z. N., Zapirain, B. G. and Elmaghraby, A., “Pathological vocal folds features extraction using a modified ac-tive contour segmentation,” Majlesi Journal of Electrical Engi-neering, Vol. 4, Issue 4, pp. 55-61, 2010.
    [11] Verikas, A., Gelzinis, A., Valincius, D., Bacauskiene, M. and Uloza, V., “Multiple feature sets based categorization of laryngeal images,” Computer Methods and Programs in Biomedicine, Vol. 85, Issue 3, pp. 257-266, 2007.
    [12] 游崇善、黃聖方、江國賢,「應用腹部電腦斷層掃瞄影像之肝臟腫瘤自動輔助診斷系統」,台灣國際醫學資訊研討會,臺灣台北,2009。
    [13] Hwang, S. and Celebi, M. E., “Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature,” IEEE International Conference on In Acoustics Speech and Signal Processing (ICASSP), Dallas, TX, pp. 678-681, March 14-19, 2010.
    [14] Yu, L., Yuen, P. C. and Lai, J., “Ulcer detection in wireless capsule endoscopy images,” In Pattern Recognition (ICPR) 2012 21st In-ternational Conference on, Tsukuba, pp. 45-48, November 11-15, 2012.
    [15] Li, B. and Meng, M. H., “Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection,” IEEE Transactions on Information Technology in Bio-medicine, Vol. 16, Issue 3, pp. 323-329, 2012.
    [16] Song, C. I., Ryu, C. H., Choi, S. H., Roh, J. L., Nam, S. Y. and Kim, S. Y., “Quantitative evaluation of vocal‐fold mucosal irreg-ularities using GLCM‐based texture analysis,” The Laryngoscope, Vol. 123, Issue 11, pp. 45-50, 2013.
    [17] Szczypiński, P., Klepaczko, A., Pazurek, M. and Daniel P., “Tex-ture and color based image segmentation and pathology detection in capsule endoscopy videos,” Computer Methods and Programs in Biomedicine, Vol. 113, Issue 1, pp. 396-411, 2014.
    [18] Turkmen, H. I., Karsligil, M. E. and Kocak, I., “Classification of laryngeal disorders based on shape and vascular defects of vocal folds,” Computers in Biology and Medicine, Vol. 62, pp. 76-85, 2015.
    [19] Masson, N., Nageotte, F., Zanne, P. and Mathelin, M., “In vivo comparison of real-time tracking algorithms for interventional flexible endoscopy,” In Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE International Symposium on, Boston, MA, pp. 1350-1353, June 28, 2009.
    [20] Dong, Z. and Wang, Z., “Screening of capsule endoscopy redun-dant image based on image motion model by block matching,” In Electrical and Control Engineering (ICECE), 2011 International Conference on, Yichang, pp. 5436-5439, September 16-18, 2011.
    [21] Yanagawa, Y., Echigo, T., Vu, H., Okazaki, H., Fujiwara, Y., Arakawa, T. and Yagi, Y., “Tracking abnormalities in video cap-sule endoscopy using surrounding features with a triangular con-straint,” In Biomedical Imaging (ISBI), 2012 9th IEEE Interna-tional Symposium on, Barcelona, pp. 578-581, May 2-5, 2012.
    [22] Cai, Z., Hu, C., Lin, W. and Yang, W. A., “A feature point extrac-tion and matching algorithm for wireless capsule endoscope im-age,” Information and Automation (ICIA), 2013 IEEE Interna-tional Conference on, Yinchuan, pp. 608-613, August 16-28, 2013.
    [23] E Doctor Online, http://goo.gl/k1WBVT, 2014。
    [24] Glottic Stenosis, http://goo.gl/TWUl9G, 2011。
    [25] Michor, F., Iwasa, Y. and Nowak, M. A., “Dynamics of cancer progression,” Nature Reviews Cancer, Vol. 4, Issue 3, pp. 197-205, 2004.
    [26] 閔華慶,「家庭實用醫學叢書4-腫瘤」,第2-11頁,牛頓出版公司,臺灣台北,1989。
    [27] 余達德,「家庭實用醫學叢書6-耳鼻咽喉科」,第68-81頁,牛頓出版公司,臺灣台北,1989。
    [28] 戴新民,「最新腫瘤防治」,第257-262頁,啟業書局,臺灣台北,1987。
    [29] National Cancer Institute, http://www.cancer.gov/, 2015。
    [30] 蒼州醫學高等專科學校,http://goo.gl/NG1qJH,2007。
    [31] Edge, S. B. and Compton, C. C., “The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM,” Annals of Surgical Oncology, Vol. 17, Issue 6, pp. 1471-1474, 2010.
    [32] Pott, L. M. and Murray, W. B., “Review of video laryngoscopy and rigid fiberoptic laryngoscopy,” Current Opinion in Anesthesi-ology, Vol. 21, Issue 6, pp. 750-758, 2008.
    [33] Wei, J., Wang, D., Yanwei, W., Jin, L., Wang, L. and Hong, L., “Industrial X-ray image enhancement algorithm based on AH and MSR,” Engineering, Vol. 3, Issue 10, pp. 1040-1044, 2011.
    [34] Abdallah, R., Galway, U., You, J., Kurz, A., Sessler, D. I. and Doyle, D. J., “A randomized comparison between the Pentax AWS video laryngoscope and the Macintosh laryngoscope in morbidly obese patients,” Anesthesia and Analgesia, Vol. 113, Issue 5, pp. 1082-1087, 2011.
    [35] Reza, A. M., “Realization of the Contrast Limited Adaptive His-togram Equalization (CLAHE) for real-time image enhancement,” Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, Vol. 38, Issue 1, pp. 35-44, 2004.
    [36] Gao, W., Zhang, X., Yang, L. and Liu, H., “An improved Sobel edge detection,” Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on, Chengdu, pp. 67-71, July 9-11, 2010.
    [37] Otsu, N., “A threshold selection method from gray-scale histo-gram,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, Issue 1, pp. 62-66, 1979.
    [38] Kass, M., Witkin, A. and Terzopoulos, D., “Snakes: active contour models,” International Journal of Computer Vision, Vol. 1, Issue 4, pp. 321-331, 1988.
    [39] Vincent, L. and Soille, P., “Watersheds in digital spaces: an effi-cient algorithm based on immersion simulations,” IEEE Transac-tions on Pattern Analysis and Machine Intelligence, Vol. 13, Issue 6, pp. 583-598, 1991.
    [40] Forgy, E. W., “Cluster analysis of multivariate data: efficiency versus interpretability of classifications,” Biometrics, Vol. 21, pp. 768-769, 1965.
    [41] Dunn, J. C., “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,” Journal of Cyber-netics, Vol 3, Issue 3, pp 32-57, 1973.
    [42] Bezdek, J. C., Ehrlich, R. and Full, W., “FCM: the fuzzy c-means clustering algorithm,” Computers and Geosciences, Vol. 10, Issue 2, pp. 191-203, 1984.

    無法下載圖示 全文公開日期 2020/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2020/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE