簡易檢索 / 詳目顯示

研究生: 梁伊婷
Yi-Ting Liang
論文名稱: 不同降雨事件特徵與非點源污染輸出關係-以坪林金瓜寮溪流域為例
Relationship between the characteristics of different rainfall events and nonpoint source pollution output : A case study of Jingualiao stream watershed in Pinglin
指導教授: 何嘉浚
Chia-Chun Ho
陳起鳳
Chi-Feng Chen
口試委員: 黃誌川
Jr-Chuan Huang
李宗祐
Tsung-Yu Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 116
中文關鍵詞: SWMM水文模式關鍵降雨特徵非點源污染
外文關鍵詞: SWMM, Rainfall Characteristics, Non-point Source Pollution
相關次數: 點閱:167下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多學者的研究均指出非點源污染貢獻量與降雨條件有著密切的關係,然而目前國內關於非點源污染負荷評估、總量管制或污染物傳輸模擬研究,大部份都以年降雨量對應的污染貢獻量為主要研究對象,對於不同降雨類型、降雨強度及降雨延時等特徵與污染輸出的相關研究則較為少見,因此本研究以翡翠水庫集水區內金瓜寮溪流域為研究區域,應用SWMM (Storm Water Management Model)水文模式分析金瓜寮溪流域2015年至2018年中之降雨事件,綜合整理並探討不同降雨特徵與總磷非點源污染貢獻之關聯性。經率定驗證之模擬結果得出金瓜寮溪流域的平均降雨污染負荷為388.99 kg/yr,而6月至10月因受梅雨及颱風的影響,非點源污染平均輸出量佔全年總污染貢獻量的87.0 %。研究指出累積雨量超過40mm以上之事件所貢獻之污染負荷量平均佔全年貢獻量之79.0 %,其中各降雨類型之單位雨量平均污染輸出量分別為0.39 kg/mm (大豪雨)、0.15 kg/mm (豪雨)、0.12 kg/mm (大雨)、0.07 kg/mm (中雨)。統計結果顯示當最大時雨量高於 50 mm時,累積雨量高於350 mm以上的事件所造成的平均降雨污染負荷量約為累積雨量低於350 mm以下事件的10倍,證明非點源污染的變化除受到降雨類型的影響之外,亦與累積雨量及降雨強度之間存在著相當密切的關係。


    Many studies have pointed out that non-point source pollution (NPS) in watershed and rainfall conditions have a close relationship. At present, there are many domestic studies on NPS load estimation, total amount control or pollutant transport simulation using different water quality models. Most of them take the annual rainfall as the main research object. However, there are few studies focused on the relationship between rainfall patterns, rainfall intensitiy or other rainfall features on NPS output. Therefore, this study took Jingualiao stream watershed as the study area and using SWMM (Storm Water Management Model) hydrological model to analyze rainfall events from 2015 to 2018 to discuss the relationship between rainfall characteristics and the contribution of NPS of total phosphorus, such as rainfall patterns, rainfall intensity and rainfall duration. According to the simulation results, the average NPS load of Jigualiao watershed was 388.99 kg/yr. Moreover, due to the influence of plumrain seasons and typhoons, the average output of NPS accounted for 87.0 % of the total annual pollution from June to October. Bseides, the NPS load contributed by events with cumulative rainfall exceeding 40mm accounted for 79.0% of the annual contribution on average. The result shows that the average NPS output per unit rainfall of the rainfall types in Jingualiao stream watershed are 0.39 kg/mm (Torrential Rain), 0.15 kg/mm (Extremely-Heavy Rain), 0.12 kg/mm (Heavy rain), 0.07 kg/mm (Medium Rain) and 0.03 kg/mm (Light Rain) respectively. The result shows that when the maximum hourly rainfall is higher than 50 mm, the average NPS load caused by the event with cumulative rainfall exceeds 350 mm is about 10 times to the event with cumulative rainfall below 350mm. It proves that the change of NPS load is not only affected by the type of rainfall, but also has a close relationship with the rainfall amount and intensity of rainfall event.

    摘要……………………………………………………………………………………I ABSTRACT …………………………………………… ………………………….II 誌謝 ………..…………………………………………… ………………………...III 目錄 …………………………………………………………………………………IV 表目錄…….………………………………………………………………………...VI 圖目錄…………………………………………………………………………...…VIII 第一章、緒論………………………………………………………………………… 1 1.1 研究動機………………………………………………………………….1 1.2 研究目的………………………………………………………………………………2 1.3 章節介紹………………………………………………………………………………3 第二章、文獻回顧…………………………………………………………………… 5 2.1非點源污染…………………………………………………………………………… 5 2.2污染負荷及影響因素……………………………………………………………... 6 2.2.1 污染物負荷估算……………………………………………………………...….6 2.2.2 降雨逕流對非點源污染的影響…………………………………………………8 2.2.3 農業活動對集水區水質的影響………………………………………………..10 2.3水文模式………………………………………………………………………………11 2.3.1集水區模式介紹…………………………………………………………….….11 2.3.2非點源模式結構特徵…………………………………………………………..16 2.4模式判定指標……………………………………………………………………….17 第三章、研究方法…………………………………………………………………...23 3.1研究區域背景概述……………………………………………………………...…24 3.1.1 地理位置與地形………………………………………………………….24 3.1.2 氣象與水文……………………………………………………………….. 26 3.1.3 水質現況………………………………………………………………….. 29 3.1.4 土地利用與人文………………………………………………………… 31 3.2水文模式介紹……………………………………………………………………… 33 3.2.1 BASINS模式…………………………………………………………….. 33 3.2.2 SWMM模式……………………………………………………………… 35 第四章、結果與討論……………………………………………………………….. 51 4.1模式建置…………………………………………………………………………….. 51 4.2模式適合度判定…………………………………………………………………… 53 4.3降雨與降雨污染貢獻量分析………………………………………………….. 63 4.4影響降雨污染貢獻之關鍵事件特徵探討………..……………….... 67 4.5各年降雨污染貢獻變化因素探討……………………………………. 80 第五章、結論與建議…………………………………………………………….... 98 5.1 結論…………………………………………………………………………………. 98 5.2建議………………………………………………………………………………….. 100 參考文獻 ………………………………………………………………….…….. 101

    [1]Agehara, S., Warncke, D.D., “Soil Moisture and Temperature Effects on Nitrogen Release from Organic Nitrogen Sources.”, Soil Science Society of America Journal, Vol. 69, pp.1844-1855, 2005.
    [2]Bauwe, A., Tiemeyer, B., Kahle, P., Lennartz, B., “Classifying hydrological events to quantify their impact on nitrate leaching across three spatial scales.” Journal of Hydrology, Vol. 531, Part 3, pp.589-601, 2015.
    [3]Bielders, C.L., Gérard, B., “Millet response to microdose fertilization in South–Western Niger: effect of antecedent fertility management and environmental factors.”, Field Crops Research, Vol. 171, pp.165-175, 2015.
    [4]Chen, N.W.,Zhang,L.P.,Zeng, Y., Huang, Y.F., "Characteristics of Agricultural Non-point Source Pollution Caused by Rainfall Runoff in J iulong River Watershed." Journal of Xiamen University Natural Science, Vol. 43, pp.537-541, 2004.
    [5]Duda, P., Hummel, P., Donigian Jr, A., & Imhoff, J. ”BASINS/HSPF: Model use, calibration, and validation.”Transactions of the ASABE, Vol.55, pp.1523-1547, 2012.
    [6]Moriasi D.N., Margaret W. Gitau, N. Pai, P. Daggupati, "Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria." American Society of Agricultural and Biological Engineers, Vol. 58, pp.1763-1785, 2015.
    [7]Fang, L.L., Shen, Z.Y., Liu R.M. "Agricultural Non-point Source Pollution in Different Rainfall Runoff." Environmental Science & Technology, Vol.31, pp.6-8, 2008.
    [8]Fu, Y.F., Chen W.H., Zhao, J.H., ”Progress and prospect of non-point pollution research.” Journal of Shanxi Hydrotechnics, No.3 , pp.32-35, 2003。
    [9]Gupta, H.V., Kling, H.,. Yilmaz, K.K, Martinez, G.F., "Decomposition of the mean squared error and NSE performance criteria : Implications for improving hydrological modelling." Journal of Hydrology , Vol.377, pp.80-91, 2009.
    [10]Jordan, P., Melland, A.R., Mellander, P.E., Shortle, G., Wall, D., "The seasonality of phosphorus transfers from land to water: implications for trophic impacts and policy evaluation. ", Science of The Total Environment, Vol.434, pp.101-109, 2012.
    [11]Lyne, V., Hollick, M., “Stochastic Time-Variable Rainfall-Runoff Modeling.”, Institute of Engineers Australia National Conference, pp.89-93, 1979.
    [12]Lu, X.N., “Analysis on relations of rainfall-runoff and non-point pollution concentration and loss amount – taking upper Chaihe reservoir river basin in Tieling as example.”, Science of Environment, Vol.36 , Part.2 , pp.46-49, 2010.
    [13]Lim, K.J., Engel, B.A., Tang, Z.X., Choi, J.D., Kim, K.S., “Automated Web GIS based hydrograph analysis tool, WHAT.”, Journal of the American Water Resources Association, Vol. 41, Issue 6, pp.1407–1416, 2005.
    [14]Lott, D.A., Stewart, M.T., ”Base flow separation: A comparison of analytical and mass balance methods.”, Journal of the Hydrology, Vol.535, pp.525–533, 2016.
    [15]Devak, M., Dhanya, C. T. "Sensitivity analysis of hydrological models: review and way forward." Journal of Water and Climate Change, Vol. 8, No.4, pp.557-575, 2017.
    [16]Harmel, R.D., Smith, P.K., Migliaccio, K.W., ”Modifying Goodness-of-Fit Indicators to Incorporate Both Measurement and Model Uncertainty in Model Calibration and Validation.” Transactions of the ASABE, Vol. 53, No.1, pp.55-63, 2010.
    [17]Oenema, O., Roest, C.W.J.,” Nitrogen and phosphorus losses from agriculture into surface waters; the effects of policies and measures in the Netherlands.”, Water Science and Technology, Vol.37 , No.2 ,pp.19-30 , 1998.
    [18]Ramos, T.B., Gonçalves, M.C., Branco, M.A., Brito, D., Rodrigues, S., Sánchez-Pérez, J.-M.,et al.,”Sediment and nutrient dynamics during storm events in the Enxoé temporary river, southern Portugal.”, Catena, Vol.127, pp.177-190 , 2015.
    [19]Sun, Z.B., Chen, Z.J., Liao, X.Y., Wang, H.M. “Study on Relationship between agricultural nonpoint source pollution output and rainfall runoff in the typical small watershed of the Three Gorges Reservoir area.” Chinese Academy of Sciences,Vol. 8, pp.877-881, 2011.
    [20]Kato, T., Kuroda, H., Nakasone, H., “Runoff characteristics of nutrients from an agricultural watershed with intensive livestock production.” Journal of Hydrology, Vol. 368, pp.79–87, 2009.
    [21]Krause, P., Boyle, D. P., Bäse, F., “Comparison of different efficiency criteria for hydrological model assessment.” Advances in Geosciences, Vol. 5, pp.89-97, 2005.
    [22]Qiu, J.L., Shen, Z.Y., Wei, G.Y., Wang, G.B., Xie, H., Lv, G.P., “A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed." Environmental Science and Pollution Research, Vol.25, pp. 6514-6531, 2017.
    [23]Xie, H., Dong, J.W., Shen, Z.Y. , Chen, L., Lai, X.J., Qiu, J.L., Wei, G.Y., Peng, T.X., Chen, X.Q. “Intra- and inter-event characteristics and controlling factors of agricultural nonpoint source pollution under different types of rainfall-runoff events.” Journal of Catena, Vol. 182, 2019.
    [24]Xue, Q.L., Hao, Z.C., Li, D. "Ecosystem modeling of water environment assessment and control.", Nanjing: Southeast University Press 1st ed., pp. 1- 5, 2009.
    [25]Zhang, S.M., Wang, Z.M., Zhang, B., Song, K.S., Liu, D.W., Ren, C.Y., "Characteristics of nonpoint source pollution from an agricultural watershed during rainfall events." International Conference on Mechanic Automation and Control Engineering, pp. 1960-1963, 2010.
    [26]Zhu, S., Fang. P.N., Lan, X.C., "Comment on Rainall Runoff Pollution." Chinese Agricultural Science Bulletin, Vol. 12, pp.240-245, 2009.
    [27]Zhu, Y., Chen, L., Wei G., Li, S.,Shen, Z, "Uncertainty assessment in baseflow nonpoint source pollution prediction: The impacts of hydrographic separation methods, data sources and baseflow period assumptions." Journal of Hydrology,Vol. 574, pp. 915-925, 2019.
    [28]Rossman, L.A., Storm Water Management Model User’s Manual Version 5.1, Envronmental Scientist, Emeritus.U.S. Environmental Protection Agnecy, Office of Research and Development, National Risk Management Research Laboratory, 2015.
    [29]Rossman, L.A, Huber, W.C., Storm Water Management Model Reference Manual Volume I – Hydrology (Revised), Office of Research and Development, National Risk Management Research Laboratory, 2016.
    [30]Rossman, L.A, Storm Water Management Model Reference Manual Volume II – Hydraulics, Office of Research and Development, National Risk Management Research Laboratory, 2017.
    [31]Rossman, L.A, Huber, W.C., Storm Water Management Model Reference Manual Volume III – Water Quality, National Risk Management Laboratory Office of Research and Development U.S. Environmental Protection Agency, 2016.
    [32]何嘉浚、林鎮洋等,北勢溪茶園非點源污染削減 (LID)現地處理調查規劃,經部水利署臺北水源特定區管理局委託,國立臺北科技大學水環境研中心執行,2015。
    [33]何嘉浚、陳起鳳等,108年臺北水源特定區茶園非點源污染削減(LID)現地處理設施之推廣、設置、維護及成效評估計劃,經部水利署臺北水源特定區管理局委託,國立臺灣科技大學生態防災中心執行,2019。
    [34]何嘉浚、黃建霖、陳起鳳等,109年臺北水源特定區茶園非點源污染削減(LID)現地處理設施之推廣設置及成效評估計畫,經部水利署臺北水源特定區管理局委託,國立臺灣科技大學生態防災中心執行,2020。
    [35]何嘉浚、陳起鳳、李宗祐等,110年臺北水源特定區非點源污染削減(LID)現地處理設施之推廣設置及成效評估計畫,經部水利署臺北水源特定區管理局委託,國立臺灣科技大學團隊執行,2021。
    [36]林鎮洋、何嘉浚等,農業活動非點源污染最佳管理措施手冊,行政院環境保護署,2010。
    [37]林鎮洋、何嘉浚等,臺北水源特地區茶園非點源污染削減(LID)現地處理調查規劃,臺北水源特定區管理局委託,國立臺北科技大學水環境中心團隊執行,2015。
    [38]林鎮洋、何嘉浚、陳起鳳等,臺北水源特定區非點源污染削減(LID)現地處理設施之推廣、設置、維護及成效評估計劃,經部水利署臺北水源特定區管理局委託,國立臺北科技大學水環境研究中心執行,2018。
    [39]溫清光、郭振泰等,曾文水庫水質調查及改善後計畫,水利署南區水資源局委託,成功大學發展基金會執行,2003。
    [40]翡翠水庫水源保護區污染源調查計畫,行政院環保署執行,2015。
    [41]張軍,中國水環境非點源污染研究概述,牡丹江師範學院學報-自然科學版,第5卷,第58-59頁,2005。
    [42]蔣金 安娜 張義 李玨 高乃云,水文過程中降雨徑流對非點源污染的影響,安徽農業科學,第40卷,第3529-3531頁,2012。
    [43]黃鈺真,HSPF模式應用於曾文水庫集水區非點源污染負荷之推估,國立成功大學碩士論文,2001。
    [44]黃佳慧,以HSPF營養鹽模組討論農業對水庫非點源污染負荷的貢獻,國立成功大學碩士論文,2005。
    [45]沈維霖,應用整合式流域管理模式評估隘寮溪流域非點源污染.,國立中山大學碩士論文,2006。
    [46]葉齡云,應用BASINS模式於非點源污染傳輸之模擬—以石門水庫為例,國立臺灣大學碩士論文,2006。
    [47]林玉婷,比較HSPF 及SWMM 模式於北勢溪集水區之研究,國立臺北科技大學碩士論文,2011。
    [48]楊佳樺,應用BASINS/HSPF推估翡翠水庫非點源污染量暨模擬最佳管理作業之研究,國立臺灣大學碩士論文,2012。
    [49]陳羿秋,石門水庫水質總量管制之研究,國立臺北科技大學碩士論文,2015。
    [50]林冠州,應用非點源汙染模式SWAT模擬翡翠水庫上游集水區流量及氮素支輸出與移動,國立臺灣師範大學碩士論文,2017。
    [51]張建業,結合 HSPF 與 WASP 模式分析非點源污染對水庫水質之影響,國立臺北科技大學碩士論文,2017。
    [52]蔡玲儀,應用SWMM與HSPF模式於水庫集水區水質總量管制之探討,國立臺北科技大學博士論文,2018。

    QR CODE