簡易檢索 / 詳目顯示

研究生: 連怡如
Yi-Ju Lien
論文名稱: 高分子光柵機械力感測器之研製
Mechanical Force sensor fabrication by polymer diffraction grating
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 何智廷
Chi-Ting Ho
曾垂拱
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 73
中文關鍵詞: 全像術干涉技術感測器繞射光柵
外文關鍵詞: diffraction gratings, sensor, holographic interferometric technique
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於光感測具有不受電磁干擾、體積小、信號易於傳輸等優點,且光對於微細變化的靈敏度比傳統電子感測器高出許多。因此我們提出結合光纖感測技術中之光柵結構與高分子材料進行一個新的感測器之製作想法,針對繞射光柵是否可運用在力感測器上,首先利用半導體製程技術與全像術干涉技術將繞射光柵設計製作於高分子材料上,再使用拉曼原理配合光柵繞射現象成功地運用光學量測機制,在張應力感測上製作出靈敏度為0.05N之感測器,並使用有限元素軟體驗證了實驗的趨勢與分析結果相同。
    此感測器無須電力驅動且製程比一般感測器簡易,材料成本上也低於傳統矽基材,最大優勢在於此感測器為彈性體且無毒性,未來可運用在變形結構之力感測與醫療領域上。因高分子光柵感測器至今尚無相關文獻出現,未來尚有許多研究方向可進行,期望此方法可提供感測器更多元化之應用與發展。


    Optical sensors are unaffected by electromagnetic field interference and can be made relatively compact with a diode source and detector. Optical sensors are also known for their sensitivity and high dynamic range. Furthermore, the sensors can be embedded in most structures with minimal modification. Here we present a new means of transducing strain along the axial direction using a diffractive Bragg grating sensor on polymer materials.
    The diffraction gratings are successfully fabricated on a polydimethylsiloxane (PDMS) polymer using the holographic interference and micromolding technique. The micro MTS tensile test incorporated with the Raman experiment showed that a relationship between the load and the observed diffraction pattern shift could be obtained. The results show an excellent correlation between the optical measurements and load with a sensitivity of 0.05N.
    The finite element method is also used to prove the experiment results. The advantage of this sensor is that it doesn’t need any electric power to drive the sensor, it is simple for fabrication, and its cost is lower than the traditional silicon based materials. Another advantage is that the sensor is elastomer material, it doesn’t have poison, and it can be used in the transducing stress on the deformed structure and medical area.
    It only has little references related to this diffractive Bragg grating sensor on polymer materials, and it needs more research in many different directions to be done. Finally, we hope this method can provide more versatile application and development on sensors.

    目錄 中文摘要……………………………………………………………... Ⅰ 英文摘要……………………………………………………………... Ⅱ 誌謝………………………………………….……………………….. Ⅲ 目錄…………………………………………………………………... Ⅳ 圖目錄………………………………………………………………... VII 第一章 緒論 1 1.1 前言…………………...…………………………………….……. 1 1.2 研究背景與文獻回顧.…………………………………………... 1 1.3 研究動機與目的…………………………………………………. 3 1.4 研究成果…………………………………………………………. 4 1.5 本文架構……………...………………………………………...... 4 第二章 光柵之相關理論 6 2.1 全像術與全像光柵…………………………………………….... 6 2.2 全像光柵的分類和特性……………………………………….... 9 2.3 光柵結構製程技術…………………………………………........ 14 2.4 光柵干涉系統架構與干涉角度計算………………………….... 15 第三章 實驗方法 17 3.1 製作流程與實驗設備……………………………………………. 17 3.2 感測器之製作……………………………………………………. 21 3.2.1 微影製程……………………...……………………………. 21 3.2.2 PDMS光柵結構製作………...……………………………. 28 3.2.3 感測器之尺寸設計…………...……………………………. 31 3.3 量測實驗…………………………………………………………. 34 3.3.1 拉伸實驗與MTS儀器介紹….…………………………….. 35 3.3.2 拉伸與光學量測實驗…...…………………………………. 37 3.4 製程分析與討論…………………………………………………. 40 3.4.1 曝光參數測試……………...………………………………. 40 3.4.2 感測器厚度測試………...…………………………………. 42 第四章 實驗結果與討論 45 4.1 感測器厚度對拉伸位移之結果比較……………….…………… 45 4.2 感測器光柵型態對拉伸位移之結果比較……………………..... 47 4.3 拉力與光柵週期變化之實驗結果………………….………….... 49 第五章 有限元素法分析 55 5.1 有限元素法介紹……………………………….………………… 55 5.2 有限元素分析………………………………….………………… 57 5.2.1 模型的建立………………………………………………… 57 5.2.2 網格化元素的選擇與分割………………………………… 59 5.2.3 材料性質的給定…………………………………………… 61 5.2.4 邊界條件與負載的設定…………………………………… 61 5.2.5 求解及後處理……………………………………………… 62 5.3 有限元素分析結果與討論…………………….………………… 62 5.3.1 九十度與零度光柵結構受拉力之週期變化……………… 63 5.3.2 光柵結構受剪力之旋轉變化……………………………… 65 5.3.3 四十五度光柵結構受拉力之旋轉變化…....……………… 66 5.3.4 綜合討論…………………………………………………… 66 第六章 結論與未來展望 68 6.1 結論…….………………………………………………………… 68 6.2 未來展望.………………………………………………………… 69 參考文獻 70

    [1] Ken-ichi YOSHIDA, Hiroshi TANIGAWA, “Development of a force sensor for minute load measurement”, Electronic Manufacturing Technology Symposium, 1989,Proceedings. Japan IEMT Symposium, Sixth IEEE/CHMT International, pp. 201-204,1989.
    [2] N. Delic, A. Vujanic, H. Detter, Z. Djuric, N. Simicic, and R. Petrovic, “Piezoresistive Force Sensor Developed for Use in Handling of Micro-parts”, IEEE Microelectronics,1997 Proceedings, 1997 21st International, pp. 527-530, Sept. 1997.
    [3] R. Puers, D. De Bruyker, and A. Cozmz, “A novel combined redundant pressure sensor with self-test function”, Sensors and Actuators, A 60, pp. 68-71,1997.
    [4] C. Lee; and I. T. Suga, “Micromachined piezoelectric force sensors based on PZT thin films”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE,T. Res. Center for Adv. Sci. & Technol., Tokyo Univ, pp. 553 – 559,1996.
    [5] C. Lee, T. Itoh, R. Maeda, and T. Suga, “Smart force sensors for scanning force microscope using the micromachined piezoelectric PZT cantilevers”, IEEE Electron Devices Meeting, International, pp. 545 – 548, Dec. 1996.
    [6] G. J. Burger, T. S. J. Lammerink, J. H. J. Fluitman, S. Imai, M. Tokuyama, and S. Hirose, “Piezoelectric impact force sensor array for tribological research on rigid disk storage media”, Micro Electro Mechanical Systems, MEMS '95, Proceedings. IEEE,pp.294-299. 1995.S. R.
    [7] Pandian, T. O. kuda, Y. Mitani, K. Kurahashi and S. Kawamura, “A Piezoelectric Force/Force-Derivative Sensor for Robotic Applications,” SICE '95, Proceedings of the 34th SICE Annual Conference. International Session Papers, pp.26-28, July 1995.X.
    [8] Adriana Cozma, Robert Puers, “Electrostatic actuation as a self-testing method for silicon pressure sensor”, Sensors and Actuators, A 60 (1997), pp.32-36
    [9] H. Kim, Y-G. Jeong, and K. Chun, “Improvement of the linearity of a capacitive 79 pressure sensor using an interdigitated electrode structure”, Sensors and Actuators A 62 (1997), pp.586-590.
    [10] D. S. Greywall, “Micromechanical light modulations, pressure gauges, and thermometers attached to optical fibers”, J. Micromech. Microeng.7, pp.343-352.
    [11]]C. Strandman, L. Smith, L. Tenerz, and B. Hok, “A Production Process of Silicon Sensor Elements for A Fiber-Optic Pressure Sensor”, Sensors and Actuators A.63,pp.69-74, 1997.
    [12] O. Tohyama, M. Kohashi, M. Sugihara, and H. Itoh, “A Fiber-Optic Pressure Microsensor for Biomedical Applications”, Sensors and Actuators A.66, pp.150-154,1998.
    [13] Horatio Lamela Rivera, Jose A. Garcia-Souto, and J. Sanz,
    “Measurement of Mechanical Vibrations at Magnetic Cores of Power Transformers with Fiber-Optic Interferometric Intrinsic Sensor, ”IEEE Journal on Selected Topics in Quantum Ectronics , Vol. 6, No. 5,2000.
    [14] Wei He, Hongbo Cheng, Jiachun Mei, and Desheng Jiang, “Direct
    Measurement of Strain-Optic Effect, ” IEEE, pp.171-173, 2002.
    [15] Gang-Chih Lin, Likam Wang, C. C. Yang, M. C. Shih, and T. J. Chung,“Thermal Performance of Metal-Clad Fiber Bragg Grating Sensors, ”IEEE Photonics Technology Letters, Vol. 10, No. 3, pp.406-408, 1998.
    [16] P.Hariharan,Optical Holography-Principles, Technique and Applications, Cambridge University Press, Cambridge(1984).
    [17] Laser-Induced Dynamics Gratings, edited by H. J. Eicher, P. Gunter and D. W. Pohl, Springer-Verlag, Berlin(1986).
    [18] Laser and Holography, edited by P. C. Mehta and V. V. Rampal, World Scientific, Singapore(1993).
    [19] T.V.Galstyan,B.Saad, M.M.Denariez-Roberge, J.Chem.Phys.,107, 22, p9319-9325(1997).
    [20] Photochemistry and Photophysics, H. Rau, edited by J. F. Rabek, vol 2, p119-141, Boca Raton(1990).
    [21] Schmahl, G., and D.Rudolph. Holographic diffraction grating, In: Progress in Optics, E. Wolf, ed., North-Holland, Amsterdam, 14, p. 195 1976.
    [22] Chung-Yen Chao, Cheng-Yen Chen, and Chee-Wee Liu, Direct writing of silicon gratings with highly coherent ultraviolet laser,Graduate Institute of Electro-Optical Engineering and Department of Electrical Engineering,, National Taiwan University, Taipei 116, Taiwan, Republic of China
    [23] Nishihara, H., Y. Handa, T. Suhara, and J. Koyama. Electron-beam directly written micro gratings for integrated optical circuits, Proc.SPIE, 239:134, 1980.
    [24] Liu, X.; De La Rue, R.M.; Krauss, T.F.; Thomas, S.; Hickd, S.E.; Atchison, J.S.; Electron Beam Production of Phase Masks for Direct Writing of Photo-Induced Gratings,Lasers and Electro-optics Europe, 1996. CLEO/Europe., Conference on , 8-13 Sept. 1996
    [25] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Albert, “Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Though a Phase Mask, ” Appl. Phys. Lett. 62(10), p1035,1993.
    [26] Taechung Yi , Lu Li, Chang-Jin Kim, “Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength, ” Sensors and Actuators A.83, pp.172-178,2000.
    [27] 陳建成, 布拉格光纖光柵振動感測器設計, 國立中山大學電機工程學系碩士論文, 2003.
    [28] 蔡士斌, 摻雜偶氮染料高分子薄膜在液晶中光致全像光柵研究,國立中山大學物理研究所碩士論文, 2003.
    [29] 陳建成, 布拉格光纖光柵振動感測器設計, 國立中山大學電機工程學系碩士論文, 2003.
    [30] 蔣志陽, 多向力微感測器設計與製作, 逢甲大學自動控制工程學系碩士論文, 2000.
    [31] 陳俊仲, 光纖布拉格光柵於結構感測器之研發與應用, 國立台灣大學土木工程研究所碩士論文, 2003.
    [32] 彭朋群, 賴英杰, 展智慧型光纖光柵感測系統, 科學發展386期,2005.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE