簡易檢索 / 詳目顯示

研究生: 趙御帆
Yu-Fan Chao
論文名稱: 緻密配比設計法應用於再生粒料混合天然粒料混凝土工程性質影響之研究
The Study on the Influence of Engineering Properties of Concrete with the Incorporation of Recycled Aggregate and Natural Aggregate designed by Densified Mixture Design Algorithm
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 黃兆龍
Chao-Lung Hwang
張大鵬
Ta-Peng Chang
陳君弢
Chun-Tao Chen
廖敏志
Min-Chih Liao
林利國
Lee-Kuo Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 164
中文關鍵詞: 再生細粒料再生粗粒料緻密配比介面過度轉換區卜作嵐材料
外文關鍵詞: Recycled Fine Aggregate(RFA), Recycled Coarse Aggregate(RCA), Densified Mixture Design Algorithm(DMDA), Interfacial Transition Zone(ITZ), Pozzolanic Material
相關次數: 點閱:226下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以再生粒料混合天然粒料達最緻密的體積堆積含量點作為主軸,增減前後10%,分別為再生細粒料佔總細粒料體積含量(30%、40%、50%)、再生粗粒料佔總粗粒料體積含量(30%、40%、50%)來探討其工程性質之影響,運用黃氏緻密配比法設計出高性能再生混凝土並改變水膠比(W/B=0.3、0.4、0.5)共27組實驗組配比,及緻密點前後再生粒料的影響程度,並與只運用天然粒料的控制組來做比較。試驗內容包括新拌性質(坍度、坍流度),硬固性質(抗壓強度、劈裂強度、超音波速、熱傳導係數),耐久性質(表面電阻、氯離子電滲、吸水率)之量測,以及運用微觀照片來觀察粒料和漿體間的介面過度轉換區,詮釋再生粒料的影響性。結果顯示,在適當的漿體量和強塑劑搭配下,坍度控制介於210~290mm,坍流度介於335~710mm之間,符合高流動性特質;硬固性質方面,隨著再生粒料含量的增加,其硬固性質越趨下降,而再生粒料取代量40%有所改善,在α1=40%其抗壓強度上升2.22~13.18%,β1=40%其抗壓強度上升0.49~4.81%;耐久性質方面,因所有配比均添加卜作嵐材料,91天電滲量均小於2000庫倫,91天電阻率均大於20 KΩ-cm。另外測試再生粒料在預飽和狀況下拌合比乾燥拌和抗壓強度品質較佳,在固定40%RFA,改變不同RCA含量時,抗壓強度上升4.34~18.20%;在固定40%RCA,改變不同RFA含量時,抗壓強度上升2.85~7.73%。


    In this study which recycled aggregate were mixed with natural aggregate achieve the most densest volume point. This point not only being as the main axis but also increasing and decreasing 10% from this point. The recycled fine aggregate (RFA) accounted for 30%, 40%, and 50% of the total fine aggregate volume. Otherwise, the recycled coarse aggregate (RCA) accounted for 30%, 40%, 50% of the total coarse aggregate volume. The high-performance recycled concrete was designed based on Hwang's densified mixture design algorithm (DMDA) and the water-to-binder ratios (W/B = 0.3, 0.4, 0.5) were changed. Besides, the influence of recycled aggregate at densest point in the neighborhood was examined. The engineering properties of all mixtures were compared with the control groups only using natural aggregate. Test content, including fresh properties tests (slump, slump flow), hardened properties tests (compressive strength, splitting tensile strength, ultrasonic pulse velocity, thermal conductivity), durability tests (electrical resistance, charge passed of chloride ion, water absorption), and micro photos to observe the interfacial transition zone (ITZ) between aggregate and paste, were explained the influence of recycled aggregate. The results indicated that slump values from 210~290mm and slump flow values from 335~710mm was controlled by suitable paste and superplasticizer, conforming the high fluidity. In terms of hardened properties, the collected values decreased with increasing content of recycled aggregate, and replacement of 40% by recycled aggregate were improved. At α1=40%, its compressive strength increases by 2.22~13.18%;at β1=40%, its compressive strength increases by 0.49~4.81%. In terms of durability, due to the incorporation of pozzolanic materials, the charge passed values were lower than 2000 Coulombs at 91 days, the electrical resistance values were higher than 20 KΩ-cm at 91 days. Additionally, the compressive strength of the concretes prepared from recycled aggregate under pre-saturation condition was better than that prepared from recycled aggregate in oven dry condition. When 40% RFA was fixed and the RCA content was changed, the compressive strength increased by 4.34~18.20%. When 40% RCA was fixed and the RFA content was changed, the compressive strength increased by 2.85~7.73%.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XIII 代碼及符號說明 XVIII 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 研究內容 2 1-4 預期成果 3 1-5 研究流程 3 第二章 文獻回顧 5 2-1 營建廢棄物之處理 5 2-2 再生綠建材 7 2-3 永續發展與循環經濟 8 2-3-1 永續發展 8 2-3-2 循環經濟 9 2-4 再生粒料基本性質 10 2-4-1 比重及吸水率 10 2-4-2 磨損率 10 2-4-3 級配 10 2-4-4 健性 11 2-4-5 扁平率 11 2-5 再生混凝土工程性質 12 2-5-1 工作性 12 2-5-2 抗壓強度 12 2-5-3 超音波速 12 2-5-4 表面電阻 13 2-6 再生粒料之強化 13 2-7 介面過度區域(Interfacial Transition Zone, ITZ) 14 2-8 黃氏緻密混凝土配比設計法 15 第三章 試驗計畫 28 3-1 計畫概要 28 3-2 試驗材料 28 3-2-1 水泥 28 3-2-2 飛灰 28 3-2-3 水淬高爐石粉 29 3-2-4 粗粒料 29 3-2-5 細粒料 29 3-2-6 強塑劑 29 3-2-7 拌合水 29 3-3 試驗流程 30 3-3-1 試驗變數 30 3-3-2 配比設計 30 3-3-3 拌合程序 34 3-4 試驗項目及方法 35 3-4-1 材料基本性質試驗 36 3-4-2 新拌混凝土性質試驗 37 3-4-3 硬固混凝土性質試驗 37 3-4-4 耐久性質試驗 39 3-4-5 微觀觀測 42 第四章 結果與分析 65 4-1 再生粒料基本性質 65 4-1-1 比重及吸水率 65 4-1-2 級配 65 4-1-3 粒料堆積 66 4-2 緻密配比設計分析 67 4-3 再生粒料混凝土新拌性質 68 4-4 再生粒料混凝土乾燥及預飽和之性質 69 4-5 再生粒料混凝土硬固性質 70 4-5-1 抗壓強度 71 4-5-2 劈裂抗張強度 75 4-5-3 超音波速 77 4-5-4 熱傳導率 80 4-6 再生粒料混凝土耐久性質 82 4-6-1 表面電阻 82 4-6-2 氯離子電滲 84 4-6-3 吸水率 87 4-7 再生粒料混凝土微觀性質 89 4-8 綜合討論 90 4-8-1 工作性 90 4-8-2 安全性 91 4-8-3 耐久性 91 4-8-4 經濟性 91 4-8-5 生態性 92 第五章 結論與建議 159 5-1 結論 159 5-2 建議 160 參考文獻 161

    1. 資源再生綠色產品促銷推廣暨成果發表會,經濟部工業局,2018。
    2. 杜宗嶽,永續性再生資源骨材混凝土之研究,國立台灣科技大學博士論文,台北,2006。
    3. 106年度砂土石產銷調查報告,經濟部礦務局,2018。
    4. 營建廢棄物管理策略,行政院環境保護署,2004。
    5. 107至109年資源回收再利用推動計畫,行政院環境保護署,2018。
    6. 張祖恩,「台灣循環經濟發展現況與展望」,財團法人中技社2018兩岸循環經濟發展論壇,台南,2018。
    7. 張大鵬、黃兆龍,「再生混凝土使用手冊之研擬」,內政部建築研究所委託研究報告,台北,2005。
    8. 內政部營建署,營建剩餘土石方資訊服務中心,
    網站:http://www.soilmove.tw/。
    9. 李崇德,建築廢棄物回收系統制度之研究,國立中央大學土木工程研究所,中壢,2002。
    10. 吳漢儒,黃氏富勒緻密配比設計法應用於高性能再生粒料混凝土性質之研究,國立台灣科技大學碩士論文,台北,2006。
    11. 魏立帆,再生粒料應用於高性能混凝土工程性質之研究,國立台灣科技大學碩士論文,台北,2004。
    12. 財團法人台灣建築中心,再生綠建材評估要項,
    網站:http://gbm.tabc.org.tw/modules/pages/regeneration。
    13. 黃兆龍、張大鵬、潘誠平、洪盟峰,再生粒料混凝土再利用於漁港工程之研究及施工規範研訂專業服務委託工作,行政院農業委員會漁業署,2005。
    14. Abid, S.R., A.H. Nahhab, H.K.H. Al-aayedi and A.M. Nuhair, “Expansion and Strength Properties of Concrete Containing Contaminated Recycled Concrete Aggregate”, Case Studies in Construction Materials, Vol.9, 2018.
    15. Fan, C.C., R. Huang, H. Hwang and S.J. Chao, “Properties of Concrete Incorporating Fine Recycled Aggregates from Crushed Concrete Wastes”, Construction and Building Materials, Vol.112, pp.708~715, 2016.
    16. Thomas, J., N.N. Thaickavil and P.M. Wilson, “Strength and Durability of Concrete Containing Recycled Concrete Aggregates”, Journal of Building Engineering, Vol.19, pp.349-365, 2018.
    17. Bui, N.K., T. Satomi and H. Takahashi, “Improvement of Mechanical Properties of Recycled Aggregate Concrete basing on a New Combination Method between Recycled Aggregate and Natural Aggregate”, Construction and Building Materials, Vol.148, pp.376~385, 2017.
    18. 劉信宏,超音波在混凝土中波傳行為之探討與應用,私立中原大學土木工程研究所碩士論文,中壢,1995。
    19. Mirian, V.L., M.L. Isabel, M. Azenha and V.B. Pablo, “Influence of Temperature in the Evolution of Compressive Strength and in Its Correlations with UPV in Eco-concretes with Recycled Materials”, Construction and Building Materials, Vol.124, pp.276-286, 2016.
    20. Hansson, I.L.H. and C.M. Hansson, “Electrical Resistivity Measurements of Portland Cement based Materials”, Cement and Concrete Research, Vol.13, pp.675-683, 1983.
    21. 黃兆龍、歐昱辰、李隆盛,高性能混凝土運用於橋樑之委託研究工作, 交通部公路總局西部濱海公路中區工程處,2016。
    22. Kurda, R., J. De Brito and J.D. Silvestre, “Water Absorption and Electrical Resistivity of Concrete with Recycled Concrete Aggregates and Fly Ash”, Cement and Concrete Composites, Vol.95, pp.169~182, 2019.
    23. Damdelen, O., “Investigation of 30% Recycled Coarse Aggregate Content in Sustainable Concrete Mixes”, Construction and Building Materials, Vol.184, pp.408~418, 2018.
    24. Dimitriou, G., P. Savva and M.F. Petrou, “Enhancing Mechanical and Durability Properties of Recycled Aggregate Concrete”, Construction and Building Materials, Vol.158, pp.228~235, 2018.
    25. Kou, S.C. and C.S. Poon, “Effect of the Quality of Parent Concrete on the Properties of High Performance Recycled Aggregate Concrete”, Construction and Building Materials, Vol.77, pp.501~508, 2015.
    26. Sim, J. and C. Park, “Compressive Strength and Resistance to Chloride Ion Penetration and Carbonation of Recycled Aggregate Concrete with Varying amount of Fly Ash and Fine Recycled Aggregate”, Waste Management, Vol.31, pp.2352-2360, 2011.
    27. 蕭添進、張大鵬、蔡得時、楊宗叡,「再生粒料混凝土配比方法與最優選工程性質之評估研究」,中國土木水利工程學刊,第二十二卷,第四期,pp.399~409,2010。

    28. 陳志賢,骨材與水泥漿體之界面微觀結構對其破裂行為之影響,國立成功大學碩士論文,台南,1995。
    29. 廖國裕,混凝土中骨材與水泥漿界面處過渡區性質與耐久性之研究,國立交通大學土木工程研究所博士論文,新竹,2004。
    30. Abed, M., R. Nemes and B.A. Tayeh, “Properties of Self-compacting High-strength Concrete Containing Multiple Use of Recycled Aggregate”, Journal of King Saud University - Engineering Sciences, 2018.
    31. Djerbi, A., “Effect of Recycled Coarse Aggregate on the New Interfacial Transition Zone Concrete”. Construction and Building Materials, Vol.190, pp.1023-1033, 2018.
    32. Li, W., J. Xiao, Z. Sun, S. Kawashima and S.P. Shah, “Interfacial Transition Zones in Recycled Aggregate Concrete with Different Mixing Approaches”, Construction and Building Materials, Vol.35, pp.1045-1055, 2012.
    33. Shi, C., Y. Li, J. Zhang, W. Li, J. Xiao, Z. Sun, S. Kawashima, S.P. Shah, L. Chong and Z. Xie, “Performance Enhancement of Recycled Concrete Aggregate – A Review”, Journal of Cleaner Production, Vol.112, pp.466-472, 2016.
    34. Singh, N. and S.P. Singh, “Carbonation and Electrical Resistance of Self Compacting Concrete Made with Recycled Concrete Aggregates and Metakaolin”, Construction and Building Materials, Vol.121, pp.400-409, 2016.
    35. Xiao, J., W. Li, Y. Fan and X. Huang, “An Overview of Study on Recycled Aggregate Concrete in China (1996–2011)”, Construction and Building Materials, Vol.31, pp.364-383, 2012.
    36. 黃兆龍,混凝土性質與行為,詹氏書局,台北,2007。
    37. 黃兆龍,高性能混凝土理論與實務,詹氏書局,台北,2003。
    38. ASTM C1202, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, USA:ASTM International.
    39. CNS中華民國國家標準,混凝土配比設計準則。
    40. 湛淵源,水泥漿質與量對混凝土工程行為之影響,國立臺灣科技大學博士論文,台北,1999。
    41. 樓佳鑫,隔熱砂漿物理性質之研究,國立台灣科技大學碩士論文,台北,2017。
    42. 詹懿任 ,應用音聲辨識技術偵測新拌混凝土在溫度與濕度環境下劣化行為,國立台灣科技大學碩士論文,台北,2011。
    43. 黃啟峰,「看台灣水泥業的能源使用與產業發展」,工業技術研究院產業推動組,2017。

    QR CODE