簡易檢索 / 詳目顯示

研究生: 蔡志達
Chih-ta Tsai
論文名稱: 水泥系複合材料緻密配比邏輯再演繹及其應用之研究
Study on the Rededuction and Application of Densified Mixture Design Algorithm for cement-based composites
指導教授: 黃兆龍
Chao-lung Hwang
口試委員: 蘇南
Nan Su
林仁益
Jen-yi Lin
林志棟
Tzu-tung Lin
林建宏
Chien-hung Lin
張大鵬
Ta-peng Chang
彭耀南
Yaw-nan Peng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 237
中文關鍵詞: 幾何觀念相似定律緻密配比邏輯水泥系複合材料適用性
外文關鍵詞: geometry concept, similarity law, densified mixture design algorithm, cement-based composites, suitability
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要利用「幾何觀念」及「相似定律」,針對1992年台灣科技大學所推動,融入「耐久性、安全性、工作性、經濟性及生態性」之緻密配比邏輯(Densified Mixture Design Algorithm, DMDA)進行再演繹,使其更趨於人性化,且於實務之應用更加簡便及經濟。其中為使爐石於緻密配比邏輯中之使用更多樣化,特針對不同爐石添加量混凝土,進行各項性能測試,以作為爐石添加比例之探討依據。試驗結果顯示,未添加其他卜作嵐材料時,爐石添加比例(x= 30 %)有較佳的性能表現。另根據「幾何觀念」及「相似定律」,可推導出水泥漿量放大前後,骨材系統各組成材料用量,係依一固定比例變化,定義為體積變化係數(n),
    此係數(n)為骨材系統體積,或水泥漿體系統體積之函數( 或
    )。此外,為探討再演繹後緻密配比邏輯之適用性,配合不同
    性能要求水泥系複合材料,及不同地域環境之應用,驗證其相關性能,並就適用性進行分析探討。研究成果顯示依據再演繹之緻密配比邏輯所設計之水泥系複合材料(水泥砂漿、混凝土)均能符合工程要求,並具備「永續、保險、人性、節能及翠綠」之優生準則,且經寒冷地區之驗證亦同樣適用。


    In this article, it is to utilize the geometry concept and the similarity law to rededuce the densified mixture design algorithm (DMDA) that incorporates with durability, safety, workability, economy and ecology which National Taiwan University of Science and Technology carried out in 1992. The purpose of the rededuction enables DMDA to have more humanity, more convenient and economic to use. In order to make various utilization of slag in DMDA, various slag contents were used to prepare concrete. The properties of concrete are measured, and taken into discussion the slag content by them. The test result indicates that under the condition that no other pozzolanic materials were added, the concrete within 30% slag has better properties. According to the geometry concept and the similarity law, we deduce that the variation of composed materials content in aggregate system depends on a fixed proportion while the cement paste amount changed. The fixed proportion is a coefficient of volume variation designated as n. And it is not only a function of the volume of aggregate system ( ) but also the volume of cement paste system ( ). In addition, to research the suitability of the rededuction of DMDA, operate the algorithm with the application of multiple cement-based composites and various environments to identify its related performances and suitability. The result of the study shows that the multiple cement-based composites designed according to the rededuction of DMDA is conformed to the requirement of construction. They are also equipped with the hygienic criteria of “ durability, insurance, humanity, economy and green”. Even in the frigid area, it is also applicable.

    中文摘要---------------------------------------------------------------------------- I 英文摘要---------------------------------------------------------------------------- II 誌謝---------------------------------------------------------------------------------- III 總目錄------------------------------------------------------------------------------- V 符號及代號說明------------------------------------------------------------------- X 表目錄------------------------------------------------------------------------------- XII 圖目錄------------------------------------------------------------------------------- XIV 第一章 緒論----------------------------------------------------------------------- 1 1-1 研究動機------------------------------------------------------------------- 1 1-2 研究目的------------------------------------------------------------------- 2 1-3 研究方法與範圍---------------------------------------------------------- 2 1-4 研究流程------------------------------------------------------------------- 3 第二章 文獻回顧----------------------------------------------------------------- 5 2-1 混凝土構成與材料特性------------------------------------------------- 5 2-1-1 混凝土之構成-------------------------------------------------------- 5 2-1-2 混凝土之材料特性-------------------------------------------------- 6 2-2 緻密配比邏輯------------------------------------------------------------- 8 2-2-1 逆填模式-------------------------------------------------------------- 9 2-2-2 正填模式-------------------------------------------------------------- 13 2-3 緻密配比邏輯之演進---------------------------------------------------- 16 2-3-1 漿量控制-------------------------------------------------------------- 16 2-3-2 用水量控制----------------------------------------------------------- 17 2-3-3 潤滑漿量厚度控制-------------------------------------------------- 18 2-4 爐石的來源與分類------------------------------------------------------- 25 2-4-1 高爐爐石-------------------------------------------------------------- 25 2-4-2 爐石之化學成份----------------------------------------------------- 26 2-4-3 爐石之物理性質----------------------------------------------------- 28 2-4-4 爐石之水化行為與機理-------------------------------------------- 28 第三章 試驗計劃----------------------------------------------------------------- 53 3-1 試驗流程------------------------------------------------------------------- 53 3-2 試驗材料------------------------------------------------------------------- 53 3-2-1 水泥-------------------------------------------------------------------- 53 3-2-2 粗、細骨材------------------------------------------------------------ 54 3-2-3 爐石粉----------------------------------------------------------------- 54 3-2-4 飛灰-------------------------------------------------------------------- 55 3-2-5 化學摻料-------------------------------------------------------------- 55 3-2-6 矽灰-------------------------------------------------------------------- 56 3-2-8 輕質骨材-------------------------------------------------------------- 56 3-3 試驗方法與設備---------------------------------------------------------- 57 3-3-1 材料基本性質試驗-------------------------------------------------- 57 3-3-2 新拌混凝土試驗----------------------------------------------------- 58 3-3-3 硬固混凝土試驗----------------------------------------------------- 60 3-4 試驗變數與項目---------------------------------------------------------- 64 第四章 緻密配比邏輯再演繹-------------------------------------------------- 83 4-1 緻密配比邏輯之數值解------------------------------------------------- 83 4-1-1 利用代數方程式求解----------------------------------------------- 83 4-1-2 利用矩陣求解-------------------------------------------------------- 86 4-2 利用幾何觀念求解緻密配比邏輯------------------------------------- 88 4-3 利用幾何觀念求解緻密配比邏輯之特點---------------------------- 92 4-3-1 簡化繁雜之計算公式----------------------------------------------- 92 4-3-2 便利多種材料組合之應用----------------------------------------- 92 第五章 爐石添加量對混凝土性質的影響----------------------------------- 105 5-1 配比設計與說明---------------------------------------------------------- 105 5-1-1 配比設計-------------------------------------------------------------- 105 5-1-2 配比編號說明-------------------------------------------------------- 105 5-2 混凝土新拌性質分析---------------------------------------------------- 106 5-2-1 工作性質分析-------------------------------------------------------- 106 5-2-2 混凝土空氣含量分析----------------------------------------------- 106 5-2-3 單位重分析----------------------------------------------------------- 106 5-2-4 凝結時間分析-------------------------------------------------------- 106 5-2-5 混凝土泌水性質分析----------------------------------------------- 107 5-2-6 裂縫敏感度分析(塑性收縮裂縫)-------------------------------- 107 5-3 混凝土硬固性質分析---------------------------------------------------- 107 5-3-1 抗壓強度分析-------------------------------------------------------- 107 5-3-2 水泥強度效益分析-------------------------------------------------- 108 5-3-3 劈裂抗張強度分析-------------------------------------------------- 108 5-3-4 鋼筋-混凝土握裹強度分析---------------------------------------- 108 5-3-5 抗彎強度分析-------------------------------------------------------- 109 5-3-6 超音波波速性質分析----------------------------------------------- 109 5-3-7 混凝土電阻係數分析----------------------------------------------- 109 5-3-8 乾縮性質分析-------------------------------------------------------- 110 5-3-9 氯離子電滲性質分析----------------------------------------------- 111 5-3-10 抗硫酸鹽侵蝕性質分析------------------------------------------ 111 5-3-11 加溫老化性質分析------------------------------------------------ 112 5-4 整體性評估---------------------------------------------------------------- 113 第六章 緻密配比邏輯於自充填水泥砂漿之應用-------------------------- 135 6-1 自充填水泥砂漿應用之工程概述------------------------------------- 135 6-2 自充填水泥砂漿之配比設計------------------------------------------- 135 6-3 自充填水泥砂漿性質分析---------------------------------------------- 138 6-3-1 新拌性質分析-------------------------------------------------------- 138 6-3-2 硬固性質分析-------------------------------------------------------- 139 6-4 實際工程應用------------------------------------------------------------- 139 第七章 緻密配比邏輯於不同耐久性要求工程之應用-------------------- 147 7-1 緻密配比邏輯於工業區污水管線之應用---------------------------- 147 7-1-1 應用之工程概述----------------------------------------------------- 147 7-1-2 配比設計及變數說明----------------------------------------------- 148 7-1-3 新拌性質分析-------------------------------------------------------- 149 7-1-4 硬固性質分析-------------------------------------------------------- 149 7-1-5 綜合性評估----------------------------------------------------------- 153 7-2 緻密配比邏輯於海域環境工程之應用------------------------------- 153 7-2-1 應用工程之概述----------------------------------------------------- 153 7-2-2 配比設計-------------------------------------------------------------- 154 7-2-3 新拌性質分析-------------------------------------------------------- 155 7-2-4 硬固性質分析-------------------------------------------------------- 155 7-2-5 預拌廠試、廠拌------------------------------------------------------ 156 7-2-6 均勻性驗證----------------------------------------------------------- 156 第八章 緻密配比邏輯於輕質、纖維混凝土之應用------------------------- 179 8-1 緻密配比邏輯於輕質混凝土之應用---------------------------------- 179 8-1-1 應用之工程概述----------------------------------------------------- 179 8-1-2 配比設計-------------------------------------------------------------- 179 8-1-3 新拌性質分析-------------------------------------------------------- 180 8-1-4 硬固性質分析-------------------------------------------------------- 181 8-1-5 預拌廠試、廠拌------------------------------------------------------ 181 8-1-6 實際應用-------------------------------------------------------------- 182 8-2 緻密配比邏輯於纖維混凝土之應用---------------------------------- 182 8-2-1 配比設計-------------------------------------------------------------- 183 8-2-2 新拌性質分析-------------------------------------------------------- 184 8-2-3 硬固性質分析-------------------------------------------------------- 184 8-2-4 實際應用-------------------------------------------------------------- 186 第九章 緻密配比邏輯於大陸瀋陽地區之應用----------------------------- 209 9-1 配比設計------------------------------------------------------------------- 209 9-2 強度等級C 25高性能混凝土之應用---------------------------------- 209 9-3 強度等級C 30高性能混凝土之應用---------------------------------- 210 9-4 強度等級C 60高性能混凝土之應用---------------------------------- 211 9-5 強度等級C 30早強防凍纖維混凝土之應用------------------------- 211 9-6 緻密配比邏輯對不同地域環境適用性分析------------------------- 212 第十章 結論與建議-------------------------------------------------------------- 225 10-1 結論------------------------------------------------------------------------ 225 10-1-1 緻密配比邏輯再演繹及爐石最佳添加量之探討------------ 225 10-1-2不同性能要求水泥系複和材料之應用------------------------- 226 10-1-3 不同地域環境水泥系複和材料之應用------------------------ 228 10-2 建議------------------------------------------------------------------------ 228 參考文獻---------------------------------------------------------------------------- 231

    1. 黃兆龍,「優生混凝土在高層建築之應用案例」,高性能材料研討會論文輯,第15∼38頁,台北,(1995)。
    2. Mindess, S. and J. F. Young, Concrete, Prentice-Hall Inc., Englewood Cliffs, N. J. (1981).
    3. Mehta, P. K., Concrete-Structure, Properties, and Materials, Prentice-Hall Inc., Englewood-Cliffs, N.J. (1986).
    4. 黃兆龍,混凝土性質與行為,台北,詹氏書局,(2002)。
    5. Hwang, C. L., and C. T. Tsai, “The Effect of Aggregate Packing Types on Engineering Properties of Self-Consolidating Concrete,” Proceedings of First International Conferences on Design, Performance, and Use of SCC in China, pp. 337~345, Hunan (2005).
    6. Tsai, C. T., L. S. Li, and C. L. Hwang, “The Effect of Aggregate Gradation on Engineering Properties of High Performance Concrete,” Journal of ASTM International (2005). (Accepted)
    7. 黃兆龍、李隆盛,「彰濱實驗室新建工程耐蝕混凝土品質驗證計劃(期末報告書)」,喬國營造股份有限公司委託,國立台灣科技大學,(2000)。
    8. Mehta, P. K., “Concrete Technology for Sustainable Development,” Concrete International, Vol. 21, No. 11, pp. 47~53 (1999).
    9. Palmer, T., “Award Winning University of Washington Parking Facility,” Concrete International, Vol. 21, No. 7, pp. 31~34 (1999).
    10. Neville, A., “Why We Have Concrete Durability Problems,” ACI SP 100-3, pp. 21~30 (1987).
    11. Metha, P. K., and R. W. Burrows, “Building Durable Structures in the 21st Century,” Concrete International, Vol. 23, No. 3, pp. 57~63 (2001).
    12. Richard, P., and M. H. Cheyrezy, “Reactive Powder Concrete with High Ductility and 200~800 MPa Compressive Strength,” ACI SP 144, pp. 507~518 (1994).
    13. 黃兆龍,「921與911災後建築及建築材料的審思」,承受荷重與侵蝕環境複合作用之混凝土結構物耐久性設計研討會論文集,第B1∼B12頁,高雄,(2002)。
    14. Bognacki, C. J., J. Marsano, and W. C. Baumann, “Spending Concrete Dollars Effectively,” Concrete International, Vol. 22, No. 9, pp. 50~56 (2000).
    15. Plenge, W. H., “Introducing Vision 2030: Our Industry's 30-Year Map to the Future,” Concrete International, Vol. 23, No. 3, pp. 27~34 (2001).
    16. Bouzoubaâ, N., and V. M. Malhotra, “Performance of Lab-Produced High-Volume Fly ash Blended Cements in Concrete,” Concrete International, Vol. 23, No. 4, pp. 31~35 (2001).
    17. Mather, B., “Use Less Cement,” Concrete International, Vol. 22, No. 11, pp. 55~56 (2000).
    18. Penttala, V., “Concrete and Sustainable Development,” ACI Material Journal, Vol. 94, No. 5, pp. 409~416 (1997).
    19. Neville, A. M., “Maintenance and Durability of Structures,” Concrete International, Vol. 19, No. 11, pp. 52~56 (1997).
    20. Malhotra, V. M., “Making Concrete Greener with Fly Ash,” Concrete International, Vol. 21, No. 5, pp. 61~66 (1999).
    21. 黃兆龍,高性能混凝土理論與實務,台北,詹氏書局,(2003)。
    22. 黃兆龍、陳建成、江明英、郭金祥,「拌和用水量對混凝土工程性質之影響」,中國土木水利工程學刊,第九卷,第四期,第561~570頁,(1997)。
    23. 湛淵源(黃兆龍指導),「水泥漿質與量對混凝土工程行為之影響」,博士論文,國立台灣科技大學營建工程系,台北,(1999)。
    24. 蔡志達(黃兆龍指導),「不同骨材堆積型式對優生混凝土工程性質影響之研究」,碩士論文,國立台灣工業技術學院營建工程技術研究所,台北,(1997)。
    25. Tsai, C. T., Y. Y. Chen, and C. L. Hwang, “The Optimization of Fly Ash Content for High-Performance Concrete,” Cement and Concrete Research (2005). (Under Review)
    26. 黃兆龍、蔡志達、孫國智、王姿涵,「採用緻密配比法高性能混凝土於瀋陽地區之設計與應用案例」,第五屆高強與高性能混凝土及其應用研討會論文輯,第266~274頁,山東青島,(2004)。
    27. Hwang, C. L., and C. T. Tsai, “The Application of Geometry Concept to Solve Algebraic Solution DMDA Method,” Proceedings of Combining the Second North American Conference on the Design and Use of Self-Consolidating Concrete and the Fourth International RILEM Symposium on Self-Compacting Concrete, Chicago (2005). (Accepted)
    28. Chen, Y. Y., C. T. Tsai, and C. L. Hwang, “The Study on Mixture Proportion of Gap-Gradation of Aggregate for SCC,” Proceedings of 3rd International Symposium on Self-Compacting Concrete, pp. 533~539, Iceland (2003).
    29. 黃兆龍、劉俊杰、李隆盛、林豐益,「高性能混凝土之緻密配比法與早期性質」,中國土木水利工程學刊,第八卷,第二期,第207~219頁,(1996)。
    30. 盧雪卿(黃兆龍指導),「漿量對優生混凝土體積穩定性之影響」,碩士論文,國立台灣科技大學營建工程技術研究所,台北,(1998)。
    31. Neville, A. M., “Water and Concrete: A Love-Hate Relationship,” Concrete International, Vol. 22, No.12, pp. 34~38 (2000).
    32. 葉叔通(黃兆龍指導),「以理想級配曲線估算粒料緻密混合比及飛灰水泥漿包裹厚度評估混凝土性質之探討」,碩士論文,國立台灣科技大學營建工程系,台北,(2005)。
    33. 黃兆龍,「高爐熟料的性質及在混凝土工程上的應用」,營建世界,第三十四期,第55~89頁,(1984)。
    34. 黃兆龍,「高爐熟料在水泥上之利用」,現代混凝土技術研討會論文輯,第162~177頁,台北,(1984)。
    35. Lea, F. M., The Chemistry of Cement and Concrete, Edward Arnold, London (1980).
    36. Derucher, K. N., and G. P. Korfiatis, Materials for Civil and Highway Engineers, Prentice-Hall Inc., Englewood Cliffs, N. J. (1987).
    37. 楊明恭,「中鋼公司高爐熟料之生產及品管狀況簡介」,卜特蘭水泥摻用高爐熟料研討會論文輯,第30~39頁,台北,(1984)。
    38. 黃兆龍、王和源、沈得縣、蘇南、林維明、林平全,「公共工程混凝土使用爐石水泥之可行性評估」,行政院公共工程委員會,國立台灣科技大學,(1999)。
    39. Mehta, P. K., ”Pozzolanic and Cementitions By Products as Mineral Admixtures for Concrete A Critical Review,” First International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral By-products in Concrete, pp. 1-46, Canada (1983).
    40. 黃兆龍,「高爐熟料及飛灰材料在混凝土工程上之應用」,高爐石與飛灰資源在混凝土工程上應用研討會論文輯,第23~30頁,台北,(1986)。
    41. 李國慶,「加拿大 Dofasco 高爐爐渣控制」,技術與訓練,第六卷,第九期,第76~81頁,(1981)。
    42. Ramachandran, V. S., R. F. Feldman, and J. J. Beaudoin, Concrete Science, Heyden and Son, London (1981).
    43. Roy, D. M., ” Effect of Blast-Furnace Slag and Related Materials on the Hydration and Durability of Concrete,” ACI SP 131, pp. 195~208 (1992).
    44. Wu, X., D. N. Roy, and C. A. Langton, “Early Stage Hydration of Slag-Cement,” Cement and Concrete Research, Vol. 13, No. 2, pp. 277~286 (1983).
    45. Bjontegaard, O., T. A. Hammer, and E. J. Sellevold, ”Cracking in HPC before Setting Concrete,” International Symposium on High-Performance and Reactive Powder Concretes, Vol. 1, pp. 1~16 (1998).
    46. 黃兆龍、湛淵源,「混凝土電阻性質與氯離子電滲行為之探討」,中國土木水利工程學刊,第十三卷,第二期,第293 ~302頁,(2001)。
    47. Chen, Y. Y., C. T. Tsai, and C. L. Hwang, “Evaluating Chloride-Ion Penetration of High Performance Concrete by Resistivity,” Cement and Concrete Research (2005). (Under Review)
    48. 劉信宏(金鵬指導),「超音波在混凝土中波傳行為之探討與應用」,碩士論文,私立中原大學土木工程研究所,中壢,(1995)。
    49. 黃兆龍、許桂銘,「超音波在混凝土內傳遞行為及其應用」,建築學報,第四期,第83~99頁,(1991)。
    50. 李隆盛、黃兆龍、張大鵬,「由超音波速評估高性混凝土抗壓強度品質」,中國土木水利學刊,第十卷,第四期,第591~594頁,(1998)。
    51. 楊偉奇(黃兆龍指導),「優生混凝土耐久性質之研究」,碩士論文,國立台灣科技大學營建工程系,台北,(1999)。
    52. Mangat, P. S., and J. M. Khatib, “Influence of Fly Ash, Silica Fume, and Slag on Sulfate Resistance of Concrete,” ACI Material Journal, Vol. 92, No. 5, pp. 542~552 (1995).
    53. Wu, Z. O., J. A. Hriljac, C. L. Hwang, and J. F. Young, “Orthosilicate Analysis, A Measure of Hydration in Pastes of Alite and Portland Cement,” Communications of the American Ceramic Society, pp. C86~C87 (1983).
    54. El-Jazairi, B., and J. M. Illston, “The Hydration of Cement Paste Using the Semi-Isothermal Method of Derivative Thermogravimetry,” Cement and Concrete research Vol. 10, No. 3, pp. 361~366 (1980).
    55. Hwang, C. L., “Drying Shrinkage and Microstructure of Hydrated Cement Paste,” University of Illinois (1983).
    56. 「工業區地下管線滲漏調查及測繪」計劃書,工業技術研究院,新竹,(2001)。
    57. 「工業區地下管線滲漏調查及測繪」期末報告,工業技術研究院,新竹,(2001)。
    58. 林維明,「鋁質水泥污水管耐硫化氫侵蝕之模擬測試探討」,防蝕工程,第十二卷,第三期,第43~58頁,(1998)。
    59. 黃兆龍、蔡志達、湛淵源、劉欣達,「台灣海域環境耐蝕鋼筋混凝土設計及施工管制」,高強與高性能混凝土及其應用第五屆學術討論會論文集,第155~163頁,山東青島,(2004)。
    60. Hwang, C. L., C. T. Tsai, and L. S. Li, “The Durability Design Consideration of SCC for Application in Marine Environment,” Proceedings of International Conference on Advances in Concrete and Construction, Vol. 1, India, pp. 413~424 (2004).
    61. 蔡昌宏(黃兆龍指導),「燒結型輕質骨材混凝土工程性質之研究」,碩士論文,國立台灣科技大學營建工程系,台北,(2001)。
    62. 蔡昆城(黃兆龍指導),「淤泥再生輕質骨材混凝土工程性質之研究」,碩士論文,國立台灣科技大學營建工程系,台北,(2002)。
    63. Hansson, I. L. H., and C. M. Hansson, “Electrical Resistivity Measurements of Portland Cement Based Material,” Cement and Concrete research Vol. 13, No. 5, pp. 675~683 (1983).
    64. Buenfeld, N. R., J. B. Newman, and C. L. Page, “The Resistivity of Mortars Immersed in Sea-Water,” Cement and Concrete research Vol. 16, No. 4, pp. 511~524 (1986).
    65. Balaguru, P., and V. Ramakrishnan, “Properties of Fiber Reinforced Concrete: Workability, Behavior Under Long-Term Loading, and Air-Void Characteristics,” ACI Materials Journal, Vol. 85, No. 3, pp. 189~196 (1988).
    66. Rossi, P., “Ultra High Performance Fiber Reinforced Concretes,” Concrete International, Vol. 23, No. 12, pp. 46~52 (2001).
    67. Rossi, P., P. Acker, and Y. Malier, “Effect of Steel Fibers at Two Stages: The Material and the Structure,” Materials and Structures, Vol. 20, pp. 436~439 (1987).
    68. Rossi, P., “High-Performance Multi-modal Fiber Reinforced Cement Composites (HPMFRCC): The LCPC Experience,” ACI Materials Journal, Vol. 94, No. 6, pp. 478~483 (1997).
    69. Hwang, C. L., C. T. Tsai, and H. T. Liu, “The Design and Application of Steel-Fiber Reinforced Self-Consolidating Concrete,” Proceedings of 3rd International Symposium on Self-Compacting Concrete, pp. 753~762, Iceland, (2003).
    70. Hwang, C. L., C. T. Tsai, and L. S. Li, “Durability Design Consideration and Application of Fiber Reinforced Concrete Composites in Taiwan,” Proceedings of ICFRC International Conference on Fiber Composites, High Performance Concretes and Smart Materials, pp. 3~17, India, (2004).
    71. Hwang, C. L., C. T. Tsai, L. S. Li, and Y. Y. Chen, “Durability Design and Application of High-Volume Fly Ash Fiber Reinforced Concrete Composites in Taiwan,” Proceedings of 8th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and natural Pozzolans in Concrete, The Supplementary Volume, pp. 572~586, Las Vegas, (2004).
    72. Tsai, C. T., L. S. Li, and C. L. Hwang, “Durability Design Consideration and Application of Fiber Reinforced Concrete Composite in Taiwan,” Cement and Concrete Research (2005). (Under Review)
    73. 蔡志達,「高性能(纖維)混凝土應用實例—台北市公車專用道」,技師月刊,第十九期,第39~44頁,(2001)。
    74. 沈得縣、黃兆龍、蔡志達,「高性能混凝土應用於公車專用道施工之案例分析」,鋪面工程,第二卷,第四期,第1~16頁,(2004)。
    75. 黃兆龍,「台灣高速鐵路箱型樑結構混凝土初步研發及驗證」,大陸工程及德商皕德公司委託,國立台灣科技大學,(1999)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2007/07/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE