簡易檢索 / 詳目顯示

研究生: 汪昀儕
Yun-Chai Wang
論文名稱: 廢輪胎再利用於填縫劑與鋪面之研究
The study of Application of Recycled Tire Rubber on Filler and Pavement
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 王和源
Her-Yung Wang
杜嘉崇
Jia-Chong Du
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 99
中文關鍵詞: 廢輪胎橡膠燃煤飛灰黃氏緻密配比法(DMDA)填縫料鋪面材料
外文關鍵詞: ecycled tire rubber, Fly ash, Densified Mixture Design Algorithm (DMDA), Asphalt filler, Pavement material
相關次數: 點閱:253下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討廢輪胎再生之應用,選用通過4.75mm、0.6mm及0.425mm作為取代天然粒料之粒徑,填料則是用飛灰,配比設計則是使用黃氏緻密配比法(DMDA),項目包括基本性質試驗、廢輪胎橡膠瀝青填縫劑試驗及道路鋪面試驗。填縫料是以通過30號(0.6mm)及40號(0.425mm)篩的橡膠粉末作為填縫料,隨著配比增加會增加橡膠粉末得使用量與飛灰,會使得其針入度、錐入度及延性隨之降低,而軟化點、黏滯度及回彈率隨之增加,但會因為橡膠膠粉添加過多的原因也會使在現場加熱溫度需要提高,故在使用時需要添加適當得粉量即可。經過綜合評估發現橡膠飛灰與瀝青膠泥的比例為1:4的填縫料,能在相對於橡膠飛灰與瀝青膠泥與1:2,且從相容性試驗看其黏滯度高,溫度敏感性低。鋪面的部分,則是通過4號篩的橡膠顆粒與其他兩種材料依比例混合而成後做成鋪面材料,結果顯示,隨著瀝青膠泥、溫度及載重增加時,穩定值就會隨著降低,為瀝青膠泥為空隙之1.3倍下的穩定值能為最優異,溫度變化下其在溫度為30℃時的穩定值為530kgf。車轍試驗結果顯示,配比1.3的抗車轍能力是最優的,而載重變化下在50公斤和溫度為30℃的環境下,對於1.3、1.7及2.0配比來說,其抗車轍能力為最高,可應用在低溫地區,因橡膠瀝青在低溫抗開裂能力及抗摩擦力較佳。


    The main purpose of this study is to investigate the application of recycled tire rubber. The specific sieve with 4.75mm (No.4), 0.6mm (No.30) and 0.425mm (No.40) were used to sieve the rubber material in order to replace the natural aggregate. Fly ash was utilized as filler in the mixture. The design of mixture proportion is based on Prof. Hwang’s densified mixture design algorithm (DMDA) method. This study includes the examination of material properties on waste rubber tire as filler and as pavement testing. The filler consists of rubber powder which passing through sieves No. 30 and No. 40. As the amount of rubber powder and fly ash increased, the penetration, cone penetration and ductility decreased simultaneously. However, the softening point, viscosity and rebound rate increased progressively. Moreover, the heat temperature in the field has to increase owing to the excessive addition of rubber powder. Consequently it is notable to add the appropriate amount of this powder. The experimental results show the asphalt binder, rubber powder and fly ash composition with the ratio of 4:1 can be heated with a low relative temperature compared with the 2:1 mixture and its viscosity is observed from the compatibility test with the low and high temperature sensitivity. The paving composition is made from mixing rubber particles which pass sieve No. 4 and the other supplementary materials to make a paved material. It shows that as the asphalt binder, temperature and load increase, the stability value decreases with the value of 1.3 as the most excellent grade, and the strength at temperature of 30℃ is achieved at 530 kgf. Rutting test results show the optimal anti-rutting capacity ratio is 1.30 and the 50 kg load-changing environment and temperature environment of 30℃ is the best anti-rutting capability for these three groups.

    Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 ix 代號及符號說明 xiii 第一章 緒論 14 1-1 研究動機 14 1-2 研究目的 15 1-3 預期成果 15 1-4 研究流程 16 第二章 文獻回顧 18 2-1 廢輪胎橡膠粉末及顆粒 18 2-1-1 廢輪胎橡膠組成 18 2-1-2 廢輪胎基本性質 18 2-1-3 廢輪胎橡膠處理 19 2-2 瀝青膠泥 21 2-2-1 瀝青膠泥物理性質 21 2-2-2 瀝青膠泥化學性質 21 2-2-3 瀝青膠泥分類 22 2-3 廢輪胎橡膠瀝青 23 2-3-1 廢輪胎瀝青膠泥填縫劑 24 2-4 廢輪胎橡膠與瀝青膠泥的反應過程 25 2-4-1 廢舊輪胎橡膠在瀝青中的相互作用[9][30] 25 2-4-2 溫度與橡膠瀝青化學裂解的影響 27 2-4-3 橡膠顆粒尺寸對橡膠瀝青化學裂解的影響 27 2-5 燃煤飛灰 28 2-6 黃氏緻密配比法[4] 28 第三章 試驗計畫 40 3-1 計畫概要 40 3-2 試驗材料 41 3-2-1 廢輪胎橡膠粒料 41 3-2-2 瀝青膠泥 41 3-2-3 燃煤飛灰 41 3-3 試驗流程 41 3-3-1 試驗變數 42 3-3-2 配比設計 42 3-3-3 拌合程序 43 3-3-4 試驗項目 45 3-4 試驗方法與設備 46 3-4-1 材料基本性質試驗 46 3-4-2 廢輪胎橡膠瀝青填縫劑試驗 47 3-4-3 廢輪胎橡膠瀝青鋪面試驗 51 第四章 結果與分析 73 4-1 材料基本性質 73 4-2 廢輪胎橡膠瀝青配比 73 4-3 廢輪胎橡膠瀝青粉末填縫劑 74 4-3-1 針入度 74 4-3-2 錐入度 75 4-3-3 軟化點 76 4-3-4 黏滯度 76 4-3-5 回彈率 77 4-3-6 延性 78 4-3-7 相容性 78 4-4 廢輪胎橡膠瀝青鋪面試驗結果分析 79 4-4-1 馬歇爾穩定值 79 4-4-2 車轍試驗結果 81 第五章 結論與建議 105 5-1 結論 105 5-2 建議 106 參考文獻 107

    [1] 交通部公路總局,統計查詢網「機動車輛登記數」,民國106年。
    [2] 行政院環境保護署,環境資源開放平台「廢輪胎回收數量」,民國106年。
    [3] 行政院環境保護署,廢棄物清理「廢棄物清理法」,民國106年。
    [4] 黃兆龍,混凝土性質與行為,詹氏書局,民國106年。
    [5] Davide, L. P., “Recycled Tyre Rubber Modified Bitumens for Road Asphalt Mixtures: A literature Review”, Construction and Building Materials, Vol. 49, p.p. 863-881 (2013).
    [6] The Federal Highway Administration (FHWA), The Use of Recycled Tire Rubber to Modify Asphalt Binder and Mixtures, FHWA-HIF-14-015 (2014).
    [7] 林禮貴主編,輪胎生產工藝,中國化學工業出版社(2008)。
    [8] Maciej, S., K.L. Justyna, J. Helena and B. Adolf, “Progress in Used Tyres Management in the European Union: A review”, Waste Management, Vol. 32, Issue 10, pp. 1742-1751 (2012).
    [9] Wang, S., D. Cheng, F. Xiao, “Recent Developments in the Application of Chemical Approaches to Rubberized Asphalt”, Construction and Building Materials, Vol. 131, p.p. 101-113 (2017).
    [10] Zhang, H., M. Gong, G. Zhang, B. Yang, “Analysis of Asphalt Durability Based on Inherent and Improved Performance”, Construction and Building Materials, Vol. 181, p.p. 12-26 (2018).
    [11] Sheng, Y., H. Li , J. Genga, Y. Tian, Z. Li and R. Xiong, “Production and Performance of Desulfurized Rubber Asphalt Binder”, International Journal of Pavement Research and Technology , Vol. 10, Issue 3, pp. 262-273 (2017).
    [12] 行政院公共工程委員會,公共工程技術庫施工綱要規範第02742章 瀝青混凝土鋪面,民國102年。
    [13] 李克聰及陳昱豪,「廢輪胎橡膠材料應用於道路交通安全設施之評估分析」,道路交通安全與執法研討會,民國91年。
    [14] Raja, M. , T. K. Roy , “ Effect of using fly ash as alternative filler in hot mix asphalt “, Perspectives in Science , Vol. 8 , p.p. 307-3092 (2016).
    [15] Choubane, B., G. Sholar, J. Musselman and G. Page,” Ten-Year Performance Evaluation of Asphalt-Rubber Surface Mixes”, Transportation Research Record: Journal of the Transportation Research Board “, Vol. 1681 (2014).
    [16] 行政院環境保護署, 國內廢輪胎處國內廢輪胎處情形說明,民國106年11月。
    [17] Xunhao, D., M. Tao, Z. Weiguang and Z. Deyu, ”Experimental Study of Stable Crumb Rubber Asphalt and Asphalt Mixture. “, Vol.157, pp. 975-981, 30 December2017 (2017).
    [18] Hainian, W., Y. Zhanping, M. Julian and H. Peiwen , “Laboratory Evaluation on High Temperature Viscosity and Low Temperature Stiffness of Asphalt Binder with High Percent Scrap Tire Rubber” ,Construction and Building Materials, Vol. 26 Issue 1, pp. 583-590 (2012).
    [19] Oliver , JWH.” Modification of Paving Asphalts by Digestion with scrap Rubber”, Transportation Research Board. Transportation Research Record 821 (1981).
    [20] The Association of Asphalt Paving Technologists, Modified Asphalt Pavement Materials: The European Experience (1986).
    [21] Bahia, H. and R. Davis, “Effect of Crumb Rubber Modifiers (CRMs) on Performance Related Properties of Asphalt Binders”, The Association of Asphalt Paving Technologists (1994).
    [22] 田輝黎,「橡膠瀝青的黏度評價指標分析」,湖南城市學院學報,第25卷 第3期,第119~120頁,中國 (2016)
    [23] Davide, L. P., A. Gordon and P. Pedro, “Manufacturing Terminal and Field Bitumen-Tyre Rubber Blends: The Importance of Processing Conditions”, Procedia - Social and Behavioral Sciences, Vol. 53, pp. 485-494 (2012).
    [24] Dawei D. , H. Xiaoxi , L. Xiaolin and Z. Liqun , “Swelling process of rubber in asphalt and its effect on the structure and properties of rubber and asphalt.” , Construction and Building Materials , Vol. 29 , pp. 316-322 (2012).
    [25] Giovanni, P. , F. Sara , M. Filippo and S. George , “A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility” , Advances in Colloid and Interface Science , Vol. 224, October 2015, pp. 72-112 (2015).
    [26] Yi, F. , Z. Maosheng and W. Ying, ” The status of recycling of waste rubber” , Materials and Design , Vol. 22, Issue 2, pp. 123-128 (2001).
    [27] J-F, M. , P. Gary and C. Peter , “Glass Transitions and Amorphous Phases in SBS–Bitumen Blends” , Thermochimica Acta , Vol. 436, Issues 1–2 , pp. 96-100 (2015).
    [28] T, Wen-Tien, C. ChienCheng , L. YuQuan and, H. ChenFeng , Chi-Hung Tsai and H. Ming-Hsien , “Status of Waste Tires’ Recycling for Material and Energy Resources in Taiwan” , Journal of Material Cycles and Waste Management , Vol. 19 Issue 3, pp. 1288–1294 (2017).
    [29] Xiong, X. , Y. Jianyin , Z. Canlin, C. Zhilong, G. Yi and X. Lihui, “Effect of Reactive Rejuvenators on Structure and Properties of UV-Aged SBS Modified Bitumen” , Construction and Building Materials , Vol. 155, pp. 780-788 (2017).
    [30] Avraam, I.I., Chapter 15 - Recycling of Rubbers , The Science and Technology of Rubber (4th Edition) , pp. 697-764 (2013).
    [31] Xiang, S. and H. Baoshan, “Recycling of Waste Tire Rubber in Asphalt and Portland Cement Concrete: An Overview”, Construction and Building Materials, Vol. 67 Part B, pp. 217-224 (2014).
    [32] ASTM D946/D946M - 15, Standard Specification for Penetration-Graded Asphalt Binder for Use in Pavement Construction, USA: ASTM International.
    [33] ASTM D5644, Standard Test Method for Rubber Compounding Materials—Determination of Particle Size Distribution of Recycled Vulcanizate Particulate Rubber, USA: ASTM International.
    [34] ASTM D1864/D1864M-89, Standard Test Method for Moisture in Mineral Aggregate Used on Built-Up Roofs, USA: ASTM International.
    [35] ASTM D792, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, USA: ASTM International.
    [36] ASTM D5, Standard Test Method for Penetration of Bituminous Materials, USA: ASTM International.
    [37] ASTM D217, Standard Test Methods for Cone Penetration of Lubricating Grease, USA: ASTM International.
    [38] ASTM D36/D36M-14, Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus), USA: ASTM International.
    [39] ASTM D4402/D4402M - 15, Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer, USA: ASTM International.
    [40] ASTM D5329-16, Standard Test Methods for Sealants and Fillers, Hot-Applied, for Joints and Cracks in Asphalt Pavements and Portland Cement Concrete Pavements, USA: ASTM International.
    [41] ASTM D113-17, Standard Test Method for Ductility of Asphalt Materials, USA: ASTM International.
    [42] ASTM D6927 – 15, Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures, USA: ASTM International.
    [43] AASHO T324, Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA), USA: American Association of State and Highway Transportation Officials.

    QR CODE