簡易檢索 / 詳目顯示

研究生: 顏士堯
Shih-Yao Yen
論文名稱: 九相混合激磁型發電機功率轉換器之設計
Design of Converter for Nine-phase Hybrid Excitation Generators
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
林長華
Chang-Hua Lin
林法正
Faa-Jeng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 九相混合激磁型發電機單一開關型昇壓轉換器市電併聯三相換流器
外文關鍵詞: nine-phase hybrid excitation generator, single switch boost type converter
相關次數: 點閱:189下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計市電併聯九相混合激磁型發電機之功率控制系統。發電機轉子採直流與永磁式激磁,其定子每相串聯電容,以抵銷發電機之等效電樞電感,增加發電機之輸出容量,並驅動單一開關型交/直流昇壓轉換器,回授其輸出電流以完成電流閉迴路的功率控制。三相換流器方面,則回授市電相電壓,並利用數位鎖相迴路估測市電角位置以用於同步旋轉座標系統轉換,俾利換流器輸出之電壓與電流的閉迴路控制;文中亦提出直流鏈電壓閉迴路之比例-積分控制,以穩定三相換流器之直流鏈電壓,將發電機之輸出饋入三相市電側而不受負載變動之影響。
    本研究先建立九相混合激磁型發電機、單一開關型昇壓轉換器、三相換流器之模型,以及系統整合控制策略,俾利Matlab/Simulink作整體的模擬,並作為實作之依據。本系統以德州儀器公司之數位信號處理器TMS320F28335為控制核心,其控制策略皆由軟體程式完成,故可減少電路元件。本文已完成九相混合激磁型發電機功率轉換器及市電併聯的實體製作。在單一開關型昇壓轉換器操作於九相時,發電機輸出功率1162.8 W,發電機每相電流總諧波失真率為9.37 %,饋入市電側功率為1100.9 W,三相換流器每相電流總諧波失真率為8.07 %,整體功率轉換系統之效率為94.7 %。實測結果驗證了本文控制策略之可行性。


    This thesis aims to design a power converter for nine-phase generator, whose magnetization consists of dc as well as permanent-magnet excitations. The output of the nine-phase generator is first connected in series with capacitors to counteract the equivalent armature inductance for increasing output power capacity. A single switch boost type ac-dc power converter introduced behind the capacitor will feedback its output dc current for the closed-loop control of current to yield the required power from the generator. Finally for the three phase power inverter, a digital phase-lock loop is designed to calculate the phase-angle of the grid voltage to facilitate frame transformation for the voltage and current closed-loop control of the inverter. In addition, a proportional-integral control is given for dc-link voltage to maintain its stability under load variation.
    The models of nine-phase hybrid excitation generator, single switch boost type ac-dc power converter as well as three-phase power inverter are built and analyzed by using Matlab/Simulink. A 32-bit digital controller, “TMS320F 28335”, is used as the control core, and all the control strategies are accomplished by software programs in order to reduce circuit components. The physical circuits of converter and inverter are built and measured. The generator output is 1162.8 W with 1100.9 W transmitted to the power grid. The phase current total harmonic distortion of three-phase inverter is 8.07%. The overall efficiency of the boost converter and power inverter is 94.7%. The experimental results verify the feasibility of the proposed power conversion and its control strategy.

    目錄 摘要 I Abstract II 誌謝 III 符號索引 VII 圖表索引 X 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻探討 2 1.3 系統架構及本文特色 3 1.4 本文大綱 4 第二章 九相混合激磁型發電機的模式及參數量測 6 2.1 前言 6 2.2 九相混合激磁型發電機之模型與數學模式 6 2.3 二極體整流及輸出電壓的分析 10 2.4九相混合激磁型發電機轉子磁極角位置估測 12 2.5九相混合激磁型發電機的參數量測 15 2.6 結語 20 第三章 九相混合激磁型發電機的昇壓轉換器分析及控制 21 3.1 前言 21 3.2 九相混合激磁型發電機串聯電容的等效電路分析 21 3.3九相混合激磁型發電機之昇壓型轉換器 25 3.4單一開關型昇壓轉換器之電流閉迴路控制策略 27 3.5九相混合激磁型發電機之單一開關型昇壓轉換器模擬與實測 29 3.6結語 38 第四章 三相市電併聯及系統整合 39 4.1前言 39 4.2三相換流器分析及控制 39 4.3三相市電併聯控制策略 40 4.4系統整合的模擬 44 4.5結語 49 第五章 實體製作及實測 50 5.1前言 50 5.2硬體電路實作 50 5.2.1.數位信號處理器介面電路 50 5.2.2.霍爾效應偵測元件規劃 52 5.2.3.電壓回授電路 53 5.2.4.電流回授電路 53 5.3軟體規劃 54 5.3.1.單一開關型昇壓轉換器之電流閉迴路程式規劃 54 5.3.2.三相換流器之直流鏈電壓閉迴路程式規劃 55 5.4系統整合實測 57 5.5結語 61 第六章 結論與建議 62 6.1結論 62 6.2建議 63 參考文獻 64 附錄A 實作平台之系統規格 67 附錄B 轉子磁極角位置偵測裝置 70 附錄C 模擬程式 77

    [1]高永昌,“全橋半控型功率轉換器於風力發電系統之應用”,國立台灣科技大學電機工程研究所碩士論文,民國九十八年。
    [2]A. B. Raju, K. Chatterjee and B. G. Fernandes,“ A Simple Maximum Power Point Tracker for Grid Connected Variable Speed Wind Energy Conversion System with Reduced Switch Count Power Converter,”IEEE Power Electronics Specialist Conference, vol. 2, no. 1, pp. 748-753, 2003.
    [3]R. Datta and V. T. Ranganathan,“A Method of Tracking The Peak Power Points for a Variable Speed Wind Energy Conversion System,” IEEE Transactions on Energy Conversion, vol. 18, pp. 163-168, 2003.
    [4]于俊傑,“風力發電最大功率追蹤技術之研究”,中原大學電機工程研究所碩士論文,民國九十二年。
    [5]A. Binder and T. Schneider,“Permanent Magnet Synchronous Generators for Regenerative Energy Conversion - a Survey,” European Conference on Power Electronics and Applications, p. 10,2005.
    [6]Z. Kai, H. M. Kojabadi, P. Z. Wang and C. Liuchen, “Modeling of a Converter-connected Six-phase Permanent Magnet Synchronous Generator,” International Conference on Power Electronics andDrives Systems, pp.1096-1100, 2005.
    [7]蕭鈞毓,“六相與雙三相繞組永磁式同步電機之分析與設計”,國立台灣科技大學電機研究所碩士論文,民國九十六年。
    [8]高瑋澤,“風力發電用三相/六相永磁式同步發電機設計及製作”,國立台灣科技大學電機研究所碩士論文,民國一百零一年。
    [9]H. Li and Z. Chen,“Design Optimization and Site Matching of Direct-drive Permanent Magnet Wind Power Generator Systems,”Renewable Energy, vol. 34, no. 4, pp.1175-1184,2009.
    [10]M.Popesci, M.V.Cistelecan, L.Melcescu and M.Covrig, “Low Speed Directly Driven Permanent Magnet Synchronous Generators for Wind Energy Applications,”International Conference on Clean Electrical Power, pp. 784-788,2007.
    [11]F. Wang, J. Bai, Q. Hou and J. Pan, “Design Features of Low Speed Permanent Magnet Generator Direct Driven by Wind Turbine,”Proceedings of the Eighth International Conference onElectrical Machines and Systems, vol. 2, pp.1017-1020, 2005.
    [12]J.A. Tapia, F. Leonardi and T.A. Lipo, "Consequent-pole Permanent-magnet Machine with extended Field-weakening Capability,"IEEE Transactions onIndustry Applications, vol.39, no.6, pp.1704-1709, 2003.
    [13]X. Bao, Q. He, Q. Wang and Y. Ni, " Research and Optimal Design on Hybrid Excitation Claw-pole Alternator for Automobile Application," 2008. ICEMS 2008. International Conference onElectrical Machines and Systems, pp.3493-3496, 2008.
    [14]E.A. Klingshirn, "High Phase Order Induction Motors - Part I-Description and Theoretical Considerations,"IEEE Transactions onPower Apparatus and Systems, vol.PAS-102, no.1, pp.47-53, 1983.
    [15]E.A. Klingshirn, "High Phase Order Induction Motors - Part II-Experimental Results,"IEEE Transactions on Power Apparatus and Systems, vol.PAS-102, no.1, pp.54-59, 1983.
    [16]E. Spooner, “Direct Coupled, Permanent Magnet Generators for Wind Turbine Applications,”IEEE Proceedings, Electric Power Applications, vol. 143, pp. 1-8, 1996.
    [17]Y. Chenand K. Smedley, “Three-phase Boost-type Grid-connected Inverter”, IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2301-2309, 2008.
    [18]尤上瑋,“具負載功率補償之雙向功率轉換三相換流器的研製”,國立台灣科技大學電機工程研究所碩士論文,民國一百零三年。
    [19]賴孟修,“永磁式同步發電機各相獨立功率轉換器之研製”,國立台灣科技大學電機工程研究所碩士論文,民國一百年。
    [20]M. Wu and R. Zhao,“Method Analysis and Comparison of SVPWM an SPWM,” Control Conference, pp. 3184-3187, 2010.
    [21]Z. Shu, J. Tang, Y. Guo and J. Lian,“An Efficient SVPWM Algorithm with Low Computational Overhead for Three-phase Inverters,”IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1797-1805, 2007.
    [22]陳柚良,“九相混合激磁式同步發電機研製”,國立台灣科技大學電機工程研究所碩士論文,民國一百零四年。
    [23]Chun-Yu Hsiao, Sheng-Nian Yeh and Jonq-Chin Hwang, “Design of High Performance Permanent-magnet Synchronous Wind Generators,” Energies, vol. 7, pp. 7105-7124, 2014 . (SCI)
    [24]Chun-Yu Hsiao, Sheng-Nian Yeh and Jonq-Chin Hwang, “A novel cogging torque simulation method for permanent-magnet synchronous machines,” Energies, vol. 4, pp. 2166-2179, 2011. (SCI)

    QR CODE