簡易檢索 / 詳目顯示

研究生: 陳彥愷
Yen-Kai Chen
論文名稱: 以交流電化學阻抗譜探討鎂添加於二階段熱浸鍍鋅鋁之電化學特性
Electrochemical Characteristic of Magnesium Addition in second stage of Hot-Dip Zn-Al Alloys by EIS
指導教授: 王朝正
Chaur-Jeng Wang
梁煥昌
Huan-Chang Liang
口試委員: 王朝正
Chaur-Jeng Wang
梁煥昌
Huan-Chang Liang
蔡榮庭
Jung-Ting Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 144
中文關鍵詞: 熱浸鍍鋅熱浸鍍鋅鋁交流電化學阻抗譜
外文關鍵詞: Hot-Dip Galvanizing, Hot-Dip Zn-Al, Electrochemical impedance spectroscopy
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將低碳鋼於 450 ℃ 進行第一階段熱浸鍍鋅 10 分鐘,再以 Zn-5Al 與 Zn-5Al-2Mg 之兩種鋅合金鍍浴進行第二階段鋅合金熱浸鍍 2.5 分鐘。透過各合金層之交流阻抗分析與等效電路擬合,進一步搭配合金層之元素分布,輔助探討鎂添加對於鍍層電性表現與耐蝕性關聯。
    實驗結果顯示,一階段熱浸鍍鋅鋅鍍層為均勻之鐵鋅合金相組成,隨著鐵鋅合金層中鋅含量的提升,使鍍層活性增加,導致電荷轉移阻抗 (Rct) 降低;二階段熱浸鍍 Zn-5Al 與 Zn-5Al-2Mg 鍍層具有相似的微觀結構,由外向底材可區分為鋅鋁(鎂)層、枝狀鐵鋁層、網狀鐵鋁層、內鋅鋁(鎂)層。其中越靠近底材之合金層,陰極元素之佔比面積越大(鐵鋁相),導致陽極 (富鋅相、鎂鋅相) 之陰極保護效果不佳,容易發生電荷轉移,出現電荷轉移阻抗 (Rct) 數值下降之趨勢。但經EIS 量測與等效電路擬合顯示,添加鎂元素仍有效提升二階段熱浸鍍鋅鋁各合金層之電荷轉移阻抗 (Rct)。透過鎂與鋅之腐蝕電位差異,鎂的優先腐蝕可以延緩鋅腐蝕電流釋放,延長陰極保護之時間,使耐蝕性上升。


    In this study, a two-stage hot-dip galvanizing process was conducted on low-carbon steel at 450 ℃. In the first stage, the steel was immersed in a zinc bath for 10 minutes. Subsequently, the second stage involved hot-dip coating with two types of zinc alloy baths, Zn-5Al and Zn-5Al-2Mg, for 2.5 minutes. The electrical performance of the coatings and their corrosion resistance were investigated by analyzing the interfacial impedance of each alloy layer and fitting an equivalent circuit model. The distribution of elements in the alloy layers was also examined to assist in exploring the relationship between the addition of magnesium and the electrical properties and corrosion resistance of the coatings.
    The experimental results demonstrate that the zinc coating in the first-stage hot-dip galvanizing process exhibits a uniform iron-zinc alloy phase composition. As the zinc content in the iron-zinc alloy layer increases, the reactivity of the coating increases, leading to a decrease in the charge transfer impedance (Rct). In the second-stage hot-dip coating with Zn-5Al and Zn-5Al-2Mg, similar microstructures are observed. From the outer layer to the substrate, distinct layers can be identified, including a zinc-aluminum (magnesium) layer, a dendritic iron-aluminum layer, a mesh-like iron-aluminum layer, and an inner zinc-aluminum (magnesium) layer. The alloy layers closer to the substrate exhibit a larger proportion of the cathodic element (iron-aluminum phase), which results in poor cathodic protection effectiveness for the anodic phases (zinc-rich and magnesium-zinc phases) and a tendency of decreased charge transfer impedance (Rct).

    However, measurements obtained through electrochemical impedance spectroscopy (EIS) and fitting with an equivalent circuit model reveal that the addition of magnesium effectively enhances the charge transfer impedance (Rct) of the alloy layers in the second-stage hot-dip zinc-aluminum process. Due to the difference in corrosion potential between magnesium and zinc, the preferential corrosion of magnesium can slow down the release of corrosion currents from zinc, prolonging the duration of cathodic protection and thus improving the corrosion resistance.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XV 第一章 前言 1 第二章 文獻回顧 3 2.1 熱浸鍍鋅 3 2.1.1 熱浸鍍鋅與防蝕原理 3 2.1.2 熱浸鍍鋅之生產製程 5 2.1.3 熱浸鍍鋅之相形成與微觀組織 6 2.1.4 熱浸鍍鋅之腐蝕行為 13 2.2 熱浸鍍鋅鋁 16 2.2.1 鋅鍍浴添加鋁 16 2.2.2 熱浸鍍鋅鋁之腐蝕行為 21 2.3 熱浸鍍鋅鋁鎂 23 2.3.1 鋅鋁鍍浴添加鎂 23 2.3.2 熱浸鍍鋅鋁鎂之腐蝕行為 27 2.4 二階段熱浸鍍鋅鋁鎂 31 2.5 電化學分析 33 2.5.1 交流阻抗分析 33 第三章 實驗方法 37 3.1 實驗流程 37 3.2 熱浸鍍前置作業 38 3.2.1 合金鍍浴製備 38 3.2.2 低碳鋼試片製備 39 3.2.3 試片前處理 41 3.3 二階段熱浸鍍操作參數 42 3.4 二階段熱浸鍍鋅鋁 / 鋅鋁鎂流程 43 3.5 逐層研磨 45 3.5.1 合金層厚度量測 45 3.5.2 鍍層方位之定義 46 3.6 實驗主要分析設備 48 第四章 結果與討論 50 4.1 一階段熱浸鍍鋅 50 4.1.1 固化之鋅鍍浴 50 4.1.2 一階段熱浸鍍鋅鋅鍍層結構分析 52 4.1.3 鐵鋅合金層之電性表現 55 4.2 二階段熱浸鍍 Zn-5Al 62 4.2.1 固化之 Zn-5Al 鍍浴 62 4.2.2 二階段熱浸鍍 Zn-5Al 鍍層 x-z 截面 64 4.2.3 二階段熱浸鍍 Zn-5Al 鍍層 x-y 截面 68 4.2.4 二階段熱浸鍍 Zn-5Al 合金層電性表現 82 4.3 二階段熱浸鍍 Zn-5Al-2Mg 89 4.3.1 固化之 Zn-5Al-2Mg 鍍浴 89 4.3.2 二階段熱浸鍍 Zn-5Al-2Mg 鍍層 x-z 截面 91 4.3.3 二階段熱浸鍍 Zn-5Al-2Mg 鍍層 x-y 截面 97 4.3.4 二階段熱浸鍍 Zn-5Al-2Mg 合金層電性表現 109 4.4 鎂添加於二階段熱浸鍍鋅鋁鍍層之電性影響 115 第五章 結論 117 參考文獻 118 附錄 126

    [1] D. de la Fuente, J. G. Castaño, and M. Morcillo, "Long-term atmospheric corrosion of zinc," Corrosion Science, vol. 49, no. 3, pp. 1420-1436, 2007.
    [2] F. Goodwin and R. Wright, "The process metallurgy of zinc-coated steel wire and Galfan® bath management," in Conference Proceedings-Wire Association International Incorporated, 2001: Citeseer, pp. 135-139.
    [3] T. Prosek, D. Persson, J. Stoulil, and D. Thierry, "Composition of corrosion products formed on Zn–Mg, Zn–Al and Zn–Al–Mg coatings in model atmospheric conditions," Corrosion Science, vol. 86, pp. 231-238, 2014.
    [4] M. Manna, "Effect of fluxing chemical: An option for Zn–5wt.% Al alloy coating on wire surface by single hot dip process," Surface and Coatings Technology, vol. 205, no. 12, pp. 3716-3721, 2011.
    [5] M. Dutta, A. K. Halder, and S. B. Singh, "Morphology and properties of hot dip Zn–Mg and Zn–Mg–Al alloy coatings on steel sheet," Surface and Coatings Technology, vol. 205, no. 7, pp. 2578-2584, 2010.
    [6] S. Schuerz et al., "Corrosion behaviour of Zn–Al–Mg coated steel sheet in sodium chloride-containing environment," Corrosion Science, vol. 51, no. 10, pp. 2355-2363, 2009.
    [7] 楊竣同, "二次浸鍍時間對熱浸鋅鋁鎂鍍層組織及耐蝕性之作用," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2022.
    [8] 施聰智, "鋁鎂添加與鍍浴溫度對熱浸鍍鋅低碳鋼鍍層形貌與耐蝕性之影響," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2021.
    [9] A. Marder, "The metallurgy of zinc-coated steel," Progress in materials science, vol. 45, no. 3, pp. 191-271, 2000.
    [10] S. Shibli, B. Meena, and R. Remya, "A review on recent approaches in the field of hot dip zinc galvanizing process," Surface and Coatings Technology, vol. 262, pp. 210-215, 2015.
    [11] F. Ozturk, Z. Evis, and S. Kilic, "3.12 Hot-Dip Galvanizing Process," 2017.
    [12] K. Han, I. Lee, I. Ohnuma, and R. Kainuma, "Formation and growth behavior of intermetallic compound phases in the interfacial reaction of solid Fe/liquid Zn at 450° C," Journal of Alloys and Compounds, vol. 888, p. 161562, 2021.
    [13] C. Jordan and A. Marder, "Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450 C: Part I 0.00 wt% Al-Zn baths," Journal of materials science, vol. 32, pp. 5593-5602, 1997.
    [14] S.-H. Hong, J.-H. Kang, D. Kim, and S.-J. Kim, "Si effect on Zn-assisted liquid metal embrittlement in Zn-coated TWIP steels: importance of Fe-Zn alloying reaction," Surface and Coatings Technology, vol. 393, p. 125809, 2020.
    [15] C. Lin and M. Meshii, "The effect of steel chemistry on the formation of Fe-Zn intermetallic compounds of galvanneal-coated steel sheets," Metallurgical and Materials Transactions B, vol. 25, pp. 721-730, 1994.
    [16] M. Meshii and C. CC, "Phase evolution in galvanneal coatings on steel sheets," ISIJ international, vol. 35, no. 5, pp. 503-511, 1995.
    [17] P. Pokorny, J. Kolisko, L. Balik, and P. Novak, "Effect of chemical composition of steel on the structure of hot–Dip galvanized coating," Metalurgija, vol. 55, no. 1, pp. 115-118, 2016.
    [18] H. Kania, J. Mendala, J. Kozuba, and M. Saternus, "Development of bath chemical composition for batch hot-dip galvanizing—A review," Materials, vol. 13, no. 18, p. 4168, 2020.
    [19] C. Lin and W. Chiou, "Effect of Phosphorus Content in Base-Steel on the Formation of Alloy Layer of Hot-Dip Coated Steel Sheets," The Physical Metallurgy of Zinc Coated Steel, pp. 31-40, 1994.
    [20] C. Jordan, R. Zuhr, and A. Marder, "Effect of phosphorous surface segregation on iron-zinc reaction kinetics during hot-dip galvanizing," Metallurgical and Materials Transactions A, vol. 28, pp. 2695-2703, 1997.
    [21] N.-Y. Tang, "Control of silicon reactivity in general galvanizing," Journal of Phase Equilibria and Diffusion, vol. 29, no. 4, pp. 337-344, 2008.
    [22] T. Graedel, "Corrosion mechanisms for zinc exposed to the atmosphere," Journal of the Electrochemical Society, vol. 136, no. 4, p. 193C, 1989.
    [23] E. Almeida, M. Morcillo, and B. Rosales, "Atmospheric corrosion of zinc Part 1: Rural and urban atmospheres," British Corrosion Journal, vol. 35, no. 4, pp. 284-288, 2000.
    [24] E. Almeida, M. Morcillo, and B. Rosales, "Atmospheric corrosion of zinc Part 2: Marine atmospheres," British Corrosion Journal, vol. 35, no. 4, pp. 289-296, 2000.
    [25] D. De la Fuente, J. Castano, and M. Morcillo, "Long-term atmospheric corrosion of zinc," Corrosion Science, vol. 49, no. 3, pp. 1420-1436, 2007.
    [26] Z. Y. Chen, D. Persson, and C. Leygraf, "Initial NaCl-particle induced atmospheric corrosion of zinc—Effect of CO2 and SO2," Corrosion Science, vol. 50, no. 1, pp. 111-123, 2008.
    [27] D. Persson, D. Thierry, and O. Karlsson, "Corrosion and corrosion products of hot dipped galvanized steel during long term atmospheric exposure at different sites world-wide," Corrosion Science, vol. 126, pp. 152-165, 2017.
    [28] G. Reumont, J. Vogt, A. Iost, and J. Foct, "The effects of an Fe–Zn intermetallic-containing coating on the stress corrosion cracking behavior of a hot-dip galvanized steel," Surface and coatings technology, vol. 139, no. 2-3, pp. 265-271, 2001.
    [29] V. Di Cocco, F. Iacoviello, L. D'Agostino, and S. Natali, "Damage micromechanisms in a hot dip galvanized steel," Procedia Structural Integrity, vol. 3, pp. 231-236, 2017.
    [30] M. Guttmann, "Diffusive phase transformations in hot dip galvanizing," in Materials Science Forum, 1994, vol. 155: Trans Tech Publ, pp. 527-548.
    [31] Z.-f. Li, Y.-q. He, G.-m. Cao, J.-j. Tang, X.-j. Zhang, and Z.-y. Liu, "Effects of Al contents on microstructure and properties of hot-dip Zn-Al alloy coatings on hydrogen reduced hot-rolled steel without acid pickling," Journal of Iron and Steel Research International, vol. 24, no. 10, pp. 1032-1040, 2017.
    [32] X. Zhang, C. Leygraf, and I. O. Wallinder, "Atmospheric corrosion of Galfan coatings on steel in chloride-rich environments," Corrosion Science, vol. 73, pp. 62-71, 2013.
    [33] C. Jing, B. Dong, A. Raza, T. Zhang, and Y. Zhang, "Corrosion inhibition of layered double hydroxides for metal-based systems," Nano Materials Science, vol. 3, no. 1, pp. 47-67, 2021.
    [34] T. Vu, M. Mokaddem, P. Volovitch, and K. Ogle, "The anodic dissolution of zinc and zinc alloys in alkaline solution. II. Al and Zn partial dissolution from 5% Al–Zn coatings," Electrochimica Acta, vol. 74, pp. 130-138, 2012.
    [35] Q. Huang, Y. Wang, B. Zhou, Y. Wei, F. Gao, and T. Fujita, "The effect of ZnAl-LDHs-CO3 on the corrosion behaviour of Zn-5Al alloys in 3.5 wt.% NaCl solution," Corrosion Science, vol. 179, p. 109165, 2021.
    [36] C. Yao, H. Lv, T. Zhu, W. Zheng, X. Yuan, and W. Gao, "Effect of Mg content on microstructure and corrosion behavior of hot dipped Zn–Al–Mg coatings," Journal of Alloys and Compounds, vol. 670, pp. 239-248, 2016.
    [37] E. Diler, S. Rioual, B. Lescop, D. Thierry, and B. Rouvellou, "Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions," Corrosion science, vol. 65, pp. 178-186, 2012.
    [38] 高子崴, "低碳鋼複合式熱浸鍍 Zn–Al–Mg 之微觀結構及耐蝕性研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2021.
    [39] L. Li, Y. Liu, H. Gao, and Z. Gao, "Phase formation sequence of high-temperature Zn–4Al–3Mg solder," Journal of Materials Science: Materials in Electronics, vol. 24, no. 1, pp. 336-344, 2013.
    [40] P. Liang et al., "Experimental investigation and thermodynamic calculation of the Al–Mg–Zn system," Thermochimica Acta, vol. 314, no. 1-2, pp. 87-110, 1998.
    [41] S. Liu, D. Kent, N. Doan, M. Dargusch, and G. Wang, "Effects of deformation twinning on the mechanical properties of biodegradable Zn-Mg alloys," Bioactive Materials, vol. 4, pp. 8-16, 2019.
    [42] M. S. Azevedo, C. Allély, K. Ogle, and P. Volovitch, "Corrosion mechanisms of Zn (Mg, Al) coated steel: the effect of HCO3− and NH4+ ions on the intrinsic reactivity of the coating," Electrochimica Acta, vol. 153, pp. 159-169, 2015.
    [43] N. Wint et al., "The kinetics and mechanism of filiform corrosion occurring on zinc-aluminium-magnesium coated steel," Corrosion Science, vol. 158, p. 108073, 2019.
    [44] J. Sullivan, S. Mehraban, and J. Elvins, "In situ monitoring of the microstructural corrosion mechanisms of zinc–magnesium–aluminium alloys using time lapse microscopy," Corrosion Science, vol. 53, no. 6, pp. 2208-2215, 2011.
    [45] M. S. Azevedo, C. Allély, K. Ogle, and P. Volovitch, "Corrosion mechanisms of Zn (Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate," Corrosion Science, vol. 90, pp. 472-481, 2015.
    [46] M. S. Azevedo, C. Allély, K. Ogle, and P. Volovitch, "Corrosion mechanisms of Zn (Mg, Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes," Corrosion Science, vol. 90, pp. 482-490, 2015.
    [47] P. Volovitch, T. Vu, C. Allély, A. A. Aal, and K. Ogle, "Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn–Al–Mg coatings on steel," Corrosion Science, vol. 53, no. 8, pp. 2437-2445, 2011.
    [48] T. Ishikawa, M. Ueda, K. Kandori, and T. Nakayama, "Air permeability of the artificially synthesized Zn–Al–Mg alloy rusts," Corrosion science, vol. 49, no. 6, pp. 2547-2556, 2007.
    [49] 白承豐, "二階段批次式熱浸鍍鋅鋁鎂合金相組成研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2022.
    [50] A. Lasia, Electrochemical impedance spectroscopy and its applications. Springer, 2002.
    [51] M. E. Orazem and B. Tribollet, "Electrochemical impedance spectroscopy," New Jersey, vol. 1, pp. 383-389, 2008.
    [52] A. Yadav, H. Katayama, K. Noda, H. Masuda, A. Nishikata, and T. Tsuru, "Effect of Fe–Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments," Corrosion Science, vol. 49, no. 9, pp. 3716-3731, 2007.

    無法下載圖示 全文公開日期 2026/08/08 (校內網路)
    全文公開日期 2026/08/08 (校外網路)
    全文公開日期 2026/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE