簡易檢索 / 詳目顯示

研究生: 陳進忠
Chin-Chung Chen
論文名稱: TFT-LCD面板乾燥設備之暫態流場數值模擬分析
Transient Numerical Simulation of Drying Module for TFT-LCD Plate
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 郭鴻森
Hong-Sen Kou
陳呈芳
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 154
中文關鍵詞: 動態網格乾燥箱風刀數值方法
外文關鍵詞: Transient Numerical Simulation, moving mesh
相關次數: 點閱:591下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文所研究主題為TFT-LCD玻璃基板之風刀乾燥箱,並將其抽風口壓力及風刀傾角設定為探討變數;利用計算分析軟體建構實體的數值模型,並且依照實際的情況設定其環境邊界條件,透過動態網格模擬玻璃基板於箱體內水平移動受到風刀出口氣體衝擊後,將其表面上的水氣與塵埃粒子帶走,經由抽風口排出。由數值模擬的結果發現,利用動態網格模擬的方式,可以明確看見玻璃基板移動對風刀出口以及外部湧入氣體所造成的影響,因此比穩態模擬方式更加接近風刀乾燥箱之真實狀況,另外抽風口帶離箱體內部氣體量大於風刀出口量,因此箱體內部形成負壓,而抽風口負壓大小與料口湧入氣體總量呈正比,且抽風口負壓越大,其箱體內部流體往-Z軸方向流動速度越快,因此對於排除液滴所造成阻礙越大。接下來將風刀傾角縮小後,風刀出風口氣體X軸動量變大,因此與入料口湧入氣體撞擊產生迴流位置點距離風刀出風口較遠,所形成的迴流相對較強,造成液滴排除阻礙。綜合本文結論可提供設備廠商進行風刀乾燥箱性能之改善措施參考,以提高後續製程良率,並藉由此經驗來做為大尺寸風刀乾燥箱體實體設計之前置步驟以及後續相關研究之參考。


Designing the drying module for LCD glass substrate is an important and challenging task for TFT-LCD industry and thus becomes the topic of this research. During the cleaning and drying process, LCD glass plate enters from the inlet end of the drying module and moves toward wind knife in a constant velocity. The strong airflow from wind knife impinges the substrate with a sharp angle to remove the thin water film and the dust on the plate surface. Then, the substrate moves continuously to exit from the outlet end. Obviously, this cleaning procedure is a dynamic phenomenon which cannot be simulated by a steady CFD calculation. Here, with the aids of CFD code FLUENT, the flow field simulation for a moving glass plate inside the drying module is accomplished by applying the method – moving mesh of unsteady state and boundary conditions based on the practical situation. The numerical results demonstrate clearly that complicate interactions exist among the moving plate, wind-knife air stream, and the incoming flows from both inlet and outlet ends inside the drying module. Note that, due to the interaction among the rebounded airflow, the incoming stream from inlet end and exhausting flow, there is a severe circulation flow existed in the bottom portion of module near the inlet end. Hence, humid airflow and water drop cannot be expelled from air exhauster smoothly. In addition, a parametric study is performed with emphases on exhauster pressure and wind knife’s inclined angle to realize their influences. It is found that a bigger inclined angle and a smaller exhauster pressure can reduce the circulation flow region and water-drop accumulation. In conclusion, this study offers a systematic analysis means for designing the drying module. Also, an extensive discussion on key parameters is summarized to serve as the design guideline for the larger LCD drying module.

目 錄 中文摘要 I Abstract II 致 謝 III 目 錄 IV 圖索引 VII 表索引 X 符號索引 XI 第一章 緒 論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 TFT-LCD面板製程 3 1.2.2 面板洗淨設備 10 1.2.3 乾燥箱之流場分析 14 1.3 研究動機 16 第二章 數值方法 20 2.1 統御方程式 22 2.1.1 連續方程式 23 2.1.2 動量方程式 23 2.2 紊流模式 25 2.3 粒子運動方程式 29 2.4 數值計算方法 34 2.4.1 對流-擴散方程式的差分方式 34 2.4.2 壓力-速度耦合關係的處理 37 2.4.3 動態網格(Dynamic Mesh)分析 43 第三章 物理模式 51 3.1 物理模式 51 3.2 分析模型 58 3.2.1 數值模型建構 59 3.2.2 數值網格規劃 62 3.2.3 邊界條件設定 71 第四章 原型數值結果與分析 73 4.1 切面定義 73 4.2 原型個案流場分析 77 4.2.1 t=0.16s流場分析 77 4.2.2 t=0.64s流場分析 86 4.2.3 t=2.56s流場分析 88 4.2.4 t=4.64s流場分析 91 4.2.5 t=6.0s流場分析 96 4.3 液滴分佈與總結 99 第五章 參數變化分析 104 5.1改變抽風口負壓之流場分析 104 5.1.1 Case2流場分析 106 5.1.2 Case3流場分析 109 5.2 風刀傾角60°之液滴分佈與討論 118 5.3 改變風刀傾角45°之流場分析 124 5.3.1 Case4流場分析 125 5.3.2 Case5流場分析 130 5.3.3 Case6流場分析 135 5.4 風刀傾角45°之液滴分佈與討論 138 第六章 結論與建議 146 6.1 結論 146 6.2 建議 149 參考文獻 151 作者簡介 153

參考文獻
[1] 李輝鈞,“台灣中小尺寸TFT-LCD專業製造廠競爭優勢分析”,國立清華大學工業工程系研究所碩士學位論文,民國九十三年六月
[2] http://cn.fpdisplay.com:7751/www.fpdisplay.com/Default.Shtml
[3] 黃騰慶,“顯影液濃度控制系統的不變量分析”,管理學院(工業工程與管理學程)碩士論文,民國九十五年一月。
[4] 陳鈺桓,“LCD玻璃基板乾燥箱之流場數值模擬”,國立台灣科技大學機械工程系研究所碩士學位論文,民國九十四年七月。
[5] 詹勝雄,“矩形空間內移動LCD 面板受垂直噴氣之動態流場研究”,國立台灣科技大學機械工程系研究所碩士學位論文,民國九十五年七月。
[6] 王福軍,計算流體動力學分析-CFD軟體原理與硬用,北京,清華大學出版社。
[7] Versteeg, H. K. and Malalasekera, W., “An Introduction to Computational Fluid Dynamics:The Finite Volume Method”, Wiley, New York, 1995
[8] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence”, Academic Press, London, England, 1972.
[9] Fluent Inc., FLUENT User’s Guide, Fluent Inc., 2004.
[10] Morsi, S. A. and Alexander, A. J., “An Investigation of Particle Trajectories in Two-Phase Flow System”, Journal of Fluid Mechanics, Vol. 2, pp.193-208, January 1998.
[11] Haider, A. and Levenspiel, O., “Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles”, Power Technology, Vol. 58, pp. 63-70, 1989.
[12] Li, A. and Ahmadi, G., “Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow”, Aerosol Science and Technology, Vol.16, pp. 209-266, 1992.
[13] Saffman, P. G., “The Lift on a Small Sphere in a Slow Shear Flow”, Journal of Fluid Mechanics, Vol. 22, pp. 385-100, 1965.
[14] Van Doormal, J. P. and Rairhby, G. D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
[15] 張堯閔,非接觸式大型玻璃搬送系統之設計與分析,國立台灣科技大學機械工程系研究所碩士學位論文,民國九十四年六月。

QR CODE