簡易檢索 / 詳目顯示

研究生: 吳佳穎
Chia-Ying Wu
論文名稱: 水泥對水淬高爐爐石粉基綠色膠結材漿體與砂漿性質之影響
Effect of cement on the properties of slag-based green binder paste and mortar
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 林宜清
黃兆龍
陳君弢
施正元
張大鵬
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 125
中文關鍵詞: FGD石膏卜特蘭水泥飛灰爐石基綠色膠結材
外文關鍵詞: FGD gypsum, Portland cement, fly ash, slag-based green binder
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為探討卜作嵐水泥對水淬高爐爐石粉、排煙脫流石膏(flue gas desulfurization, FGD)石膏及燃煤飛灰等三種混合料綠色膠結材漿體及砂漿工程性質之影響,試驗變數包括三種水固比(w/s = 0.3、0.4及0.5)、5種齡期(3、7、14、21及28天)、7種卜作嵐水泥取代部分FGD石膏(0、3、5、7、9、11及13 wt.%)、以21種飛灰取代部分水淬高爐爐石粉量(取代範圍約為6.9% ~ 17.78 wt.%),用以觀察其漿體凝結時間、坍流度等新拌性質、抗壓強度、非破壞檢測等工程性質之發展趨勢,並以SEM與XRD等微觀分析驗證巨觀行為。
    研究結果顯示:(1) 凝結時間:各組水固比之各組取代量膠結材漿體之初凝時間並無明顯趨勢亦無明顯之落差,但在終凝上,在卜作嵐水泥取代量小於7%時,三種水固比漿體終凝時間均小於取代量3%之漿體,而當在取代量9%時,水固比0.4至0.6漿體凝結時間增加量分別為0.5%、1.5%、3.3%,取代量11及13%之漿體則無規律。(2)坍流度:在相同水固比、固定水量下,不同卜作嵐水泥取代量漿體所對應之坍流度差異並不大,推測其原因為所拌合水量已使漿體具有足夠流動性。(3)抗壓強度:不同水固比但相同水泥取代量之硬固漿體除齡期三天外,基本上仍以水固比為0.4之硬固漿體抗壓強度表現最好,推測為早期強度容易受拌合當時與後續養護之溫度及濕度等外在因素不同而有不同之變化。(4)水固比0.4至0.6之硬固漿體於14天與28天之超音波速與抗壓強度均呈現正相關趨勢,顯示超音波速隨試體緻密性增加而增加。(5)三種水固比之硬固漿體在14天與28天之熱傳導係數在0.69 W/m.K - 0.82 W/m.K之間,可顯示水固比與卜作嵐水泥取代量並對硬固漿體熱傳導係數影響不大。(6)透過SEM之EDS成分分析可發現硬固漿體之長條塊狀結構多為Ca與S成分,並含有少量之鋁,推測為硫鋁酸鈣,為結構強度之來源,水固比0.5-7%硬固漿體中也發現含有大量之硫化物結構。

    關鍵字:FGD石膏、卜作嵐水泥、飛灰、爐石粉基綠色膠結材


    In this study, in order to investigate the effect of cement on the engineering properties of slag-based green binder paste and mortar produced with three kinds of mixture materials: slag, flue gas desulfurization (FGD) gypsum and fly ash. The experimental variables, which include three water-solid ratios (w/s = 0.3, 0.4, and 0.5), five ages (3, 7, 14, 21, and 28 days), seven types of Portland cement to replace part of the FGD plaster (0,3, 5, 7, 9, 11 and 13 wt.%), and 21 types of fly ash to replace part of slag (substitution range between 5.28 ~ 12.68 wt.%), would be used to observe the development trend of engineering properties of paste such as setting time, slump flow, compressive strength and non-destructive testing, and verify the macroscopic behavior by microscopic analysis such as SEM and XRD.
    The research results show that:(1)In the initial setting time ,there is no obvious trend and no significant difference of the binders of the various groups of water-solid ratio in each group. However, in the final setting time, when the replacement of Portland cement is less than 7%, the final setting time of the three water-solid ratio paste is smaller than the paste with the replacement of 3%, and when the cement replacement is 9%, the water-solid ratio of 0.4 to 0.6 paste setting time is increased by 0.5%, 1.5%, and 3.3%, respectively, anr the replacement of 11 and 13% of the setting time is irregular. (2) For the slump flow, under the same water-solid ratio and fixed water volume, the difference in slump flow between different cement substitutes is not large, and the reason is that the amount of water mixed makes the paste sufficient fluidity. (3) For the compressive strength, except for the strength with three-day age, the same amount of cement replacement for different water-solid ratios would show the best result when the water-solid ratio set with 0.4. With the result, the presumed main reason is that the strength would be easily influenced by the temperature and the humidity when the specimen be casted in early stage. (4) The hard-solid paste with water-solid ratio of 0.4 to 0.6 showed a positive correlation between ultrasonic wave velocity and compressive strength at 14 days and 28 days, indicating that the ultrasonic wave velocity increased with the increase of the co MPactness of the test piece. (5) There is no large difference in the heat transfer coefficient between the three water-solid ratios hard solid at 14 days and 28 days, and the value falls below 0.69 W/m. k -0.82 W/m. k. It can be shown that the water-solid ratio and the Portland cement replacement have little effect on the heat conductivity of the hard solid paste. (6) Through the analysis of EDS of SEM, it can be found that the long block structure is mostly Ca and S components, and contains a small amount of aluminum, which is presumed to be calcium sulphoaluminate, which is presumed to be the source of structural strength.

    Key words: FGD gypsum, Portland cement, fly ash, slag-based green binder.

    第一章 緒論 1.1研究動機 1.2研究目的 1.3研究內容與流程 第二章 文獻回顧 2.1前言 2.2 水淬高爐爐石粉基簡介 2.2.1水淬高爐爐石粉 2.2.2水淬高爐爐石粉物理性質 2.2.3水淬高爐爐石粉之化學性質 2.3 排煙脫硫石膏(flue-gas desulfurization gypsum,FGD) 2.3.3排煙脫硫設備簡介 2.3.3FGD石膏物理性質 2.3.3FGD石膏化學性質 2.4 FGD石膏作為SSC中之角色與反應機制 2.5水泥在SSC中之活化劑 2.7 添加FGD影響之相關研究 2.8水固比參數之影響 第三章 試驗計畫 3.1試驗內容與流程 3.2試驗材料 3.3試驗儀器設備 3.4試驗變數與項目 3.4.1試驗內容範圍 3.4.2試體編號說明 3.5配比設計概念 3-6試體拌合步驟 3.7 試驗方法 3.7.1新拌性質試驗 3.7.2 硬固性質試驗 3.7.3 非破壞檢測試驗 3.7.4 微觀分析試驗 第四章 試驗結果與分析 4.1 漿體新拌性質 4.1.1凝結時間 4.1.2試拌漿體之坍流度 4.2爐石粉基聚合物物理性質 4.2.1抗壓強度 4.3非破壞性檢測 4.3.1 超音波速 4.3.2熱傳導係數 4.3.3 共振頻率及阻尼分析儀 4.4爐石粉基聚合物微觀性質 4.4.1掃描式電子顯微鏡 (SEM) 4.4.2 X光繞射分析 (XRD) 4.5 砂之新拌性質與工作性質試驗結果與分析 4.5.1 新拌坍流度性質 4.6 FGD膠結材砂漿之工程性質 4.6.1 抗壓強度 4.6.2 超音波速 4.6.3 熱傳導係數 第五章 結論與建議 5.1結論 5.2建議 第六章 參考文獻

    [1]巴黎協定,聯合國氣候變化綱要公約(UNFCCC) https://www.mofa.gov.tw/igo/cp.aspx?n=5BCEFD9636EDFFE4

    [2] 郭振雄、陳香梅、羅光達,台灣工業部門二氧化碳之排放減量,應用經濟論叢,第95卷,(2014)。

    [3] United Nations, “Kyoto protocol to the united nations framework convention on climate change,” https://unfccc.int/resource/docs/convkp/kpeng.pdf,(1998).

    [4] 環境資訊中心,「巴里島路線圖要點」,http://e-info.org.tw/node/29097, (2017)。

    [5] 台灣因應氣候變化綱要公約資訊,「聯合國氣候變化綱要公約」(United Nations Framework Convention on Climate Change, UNFCCC), http://www.tri.org.tw/ unfccc/ Unfccc/ UNFCCC01.htm, (2017)。

    [6] Malhotra, V. M.and P. K. Mehta, “High-performance, high-volume fly ash concrete : materials, mixture proportioning, properties, construction practice, and case histories,” Supplementary Cementing Materials for Sustainable Development Inc., Ottawa, (2005).

    [7] Hardjito, B. D.and B.V. Rangan, “Development and properties of low calcium fly ash based geopolymer concrete,” Research Report GC 1, Faculty of Engineering, Curtins University of Technology, Perth, Australia, (2005).

    [8] Taylor, M., C. Tam and D. Gielen, “Energy efficiency and CO2 emissions from the global cement industry,” International Energy Agency, IEA, Paris, (2006).

    [9]卜作嵐材料種類及應用https://sites.google.com/site/bb9905011/2-1-bo-zuo-lan-cai-liao-de-zhong-lei-ji-fan-ying/bo-zuo-lan-fan-ying

    [10]陳冠宇,鹼激發爐石粉基膠體配比因子對其工程性質影響之研究,營建工程系碩士論文,國立臺灣科技大學,台北市,(2010)。

    [11]Davidovits, J., “Geopolymer: man-made rock geosynthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91- 139, (1994).

    [12]Geopolymer Institute, http://www.geopolymer.org, (2017).

    [13]許偉哲,TFT-LCD廢玻璃鹼激發膠結材之物理性質,土木工程學系碩士班,國立成功大學,台南市,(2009)。
    [14] 邱友梅,無鹼激發廢玻璃膠結材之研究,土木工程學系碩士論文,國立成功大學,台南市,(2012)。

    [15] 邱顯楠,含偏高嶺土與稻殼灰鹼激發膠結材及砂漿之防火性能和工程性質探討,營建工程系碩士論文,國立臺灣科技大學,台北市,(2012)。

    [16] 超硫酸鹽水泥的水化產物及孔結構特性,高育欣 , 余保英 , 王軍,http://qks.cqu.edu.cn/html/cqdxxbcn/2014/3/201403020.htm(2018)

    [17] 國家教育研究院,硫酸鈣與半水硫酸鈣、二水硫酸鈣之關係。http://terms.naer.edu.tw/detail/1318930/?fbclid=IwAR1b5adcQL2wp--tDFq13PK73Cg-6AeFm0Ch9Y3Luy7_l6xfYAwiEHX-AHo(2018)

    [18] 台灣電力公司綜合研究所,試驗報告。(2018/10-2018/12)

    [19] FGD排煙脫硫系統https://slideplayer.com/slide/5215545/(2018)

    [20] 排煙脫硫反應式 https://slideplayer.com/slide/5215545/(2019)

    [21] 中聯資源http://www.chc.com.tw/index.html(2019)

    [22] 江慶堂,混凝土快速氯離子穿透試驗之導電活化能,河海工程所博士論問,國立海洋大學,基隆市,(2009)。

    [23] Mariella CortezCaillahua,” Technical feasibility for use of FGD gypsum as an additive setting time retarder for Portland cement,” Journal of Materials Research and Technology, Volume 7, Issue 2, Pages 190-197(2018)

    [24]Lei,D.Y., ”Study on properties of untreated FGD gypsum-based high-strength building materials,” Journal of Construction and Building Materials,Volume 153,Pages 765-773(2017)

    [25] 趙青林,周明凱,超硫酸鹽水泥在德國的研究與應用,《新世紀水泥導報》2008年第6期 5-10 http://www.cqvip.com/qk/90193b/200806/28720188.html

    [26] Tzouvalas,G., ” Alternative calcium-sulfate-bearing materials as cement retarders: Part II. FGD gypsum,” Journal of Cement and Concrete Research,Volume 34, Issue 11 Pages 2119-2125(2004)

    [27] 郭曉潞、施惠生,” Influence of thermally treated flue gas desulfurization (FGD) gypsum on performance of the slag powder concrete.” Journal of Wuhan University of Technology-Mater. Sci. Ed. Volume 28, Issue 6, pp 1122–1127(2013)

    [28] 危時秀,普通混凝土熱傳導性質之研究,土木工程學系碩士論文,中原大學,桃園市,(2003)

    [29] 洪盟峰,隔熱混凝土工程性質之探討,德霖學報「第十九期」,(2005)

    [30] 黃兆龍博士,混凝土性質與行為(豪華第三版)-

    [31] 黃兆龍,卜作嵐混凝土使用手冊,財團法人中興工程顧問社,(2007)

    [32] 汪翊鐙,副產石灰配合再生粒料製作無水泥混凝土可行性評估,土木研究所碩士論文,國立中央大學,桃園市。(2009)

    [33] Antonio Telesca"Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials,"Journal of Waste Management a, Volume 33, Issue 3, Pages 628-633(2013)

    [34] Papageorgiou,” Use of inorganic setting retarders in cement industry,” Journal of Cement and Concrete Composites,Volume 27, Issue 2, Pages 183-189(2005)

    [35] Shiyun Zhong,” Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder,” Journal of Waste Management,Volume 32, Issue 7, Pages 1468-1472(2012)

    無法下載圖示 全文公開日期 2025/04/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE