簡易檢索 / 詳目顯示

研究生: 陳宏嘉
Hong-Jia Chen
論文名稱: 韌性斜撐構材在耐震結構之應用
The application of Buckling Inhibited Brace on Seismic Resistant Structural Systems
指導教授: 陳正誠
Cheng-Cheng Chen
口試委員: 黃世建
S. J. Hwang
陳誠直
Cheng-Chih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 138
中文關鍵詞: 韌性斜撐構材自行復位同心斜撐構架桁架梁預力鋼腱遲滯行為
外文關鍵詞: Buckling Inhibited Brace, Self-Centering, Concentrically-Braced Frame, Truss-Girder, pre-stress tendon, hysteretic behavior
相關次數: 點閱:210下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

韌性斜撐構材( Buckling Inhibited Brace , BIB)是由主受力元件與側撐元件組成,其軸力由主受力元件承擔,側撐元件提供主受力元件連續之側向支撐,防止主受力元件受壓挫屈。本研究將BIB構材應用於自行復位同心斜撐構架系統(SC-CBF)及桁架梁構架系統,並採用ANSYS有限元素分析軟體進行非彈性反復載重分析,探討兩構架系統之遲滯行為。
自行復位同心斜撐構架系統(SC-CBF)係由同心斜撐構架、預力鋼腱及BIB構材所組成,地震作用下藉由同心斜撐構架底部開縫之結構行為使BIB消散能量,並利用預力鋼腱將構架自行復位回原點。本研究主要參數有鋼腱預應力大小、鋼腱額外長度、BIB消能段強度、鋼腱面積、構架高寬比、增加垂直載重、預力鋼腱配置位置及以附加BIB柱構材取代同心斜撐構架中之部份柱構材。研究結果可以得到以下結論:(1) 鋼腱預應力大小、鋼腱額外長度、BIB消能強度、鋼腱面積、構架高寬比均為設計時可調整構架行為之參數;(2) 垂直載重對於SC-CBF構架強度有很好之幫助;(3) SC-CBF構架在地震力作用時構架之柱構材產生不可忽略之垂直位移;(4) 鋼腱配置於鋼板剪力牆中間之構架,其性能最佳;(5) 預力鋼腱配置於鋼板剪力牆兩端且底部設有基座之構架,可以降低一樓柱之垂直位移;(6) 以附加BIB柱構材取代同心斜撐構架中之部份柱構材,可以降低一樓柱之垂直位移。
桁架梁構架系統,由柱與桁架梁所組成,將BIB構材運用到桁架梁桿件中,以改善傳統桁架梁構架延展性不佳之缺點。研究結果可以得到以下結論:(1) 將BIB設置於桁架梁構架兩端之下弦桿為較佳之配置;(2) 桁架梁構架將BIB置於兩端下弦桿,其梁中點位移變化較小,結構行為較一般抗彎矩構架佳。


A Buckling Inhibited Brace, or BIB, is composed of a main load-carrying element and a lateral-support element. The axial forces are taken only by the main load-carrying element. The lateral-support element provides continuous lateral support for main load-carrying element to prevent the load-carrying element from buckling. The aim of this study is the application of BIBs in Self-Centering Steel Concentrically-Braced Frame Systems (SC-CBFs) and Truss-Girder Frame Systems (TGs). Software ANSYS was used to investigate the hysteretic behavior of the two systems.
SC-CBFs consist of CBFs, prestress tendons, and BIBs. Gap-opening behavior at the bottom of these systems makes BIBs dissipate energy, and prestressed tendons will pull the structure back to its original position.The mainly parameters are pre-stress level, tendon extended length, strength in energy dissipated zone of BIBs, tendon areas, height-width ratio, increment of vertical loading, the location of prestressed tendons, and the part of columns replaced by BIBs in concentrically braced frame. Results obtained from this study are as follows : (1) pre-stress level, tendon extended length, strength of BIBs, tendon areas, and height to width ratio of frame are the parameters that affect the behavior of SC-CBF;(2) vertical loading can increase the strength of SC-CBF;(3) The vertical displacement of SC-CBF caused by lateral force is quite significant;(4) The frame with tendons installed in the middle of steel shear walls has the best hysteretic behavior;(5) The frame with tendons installed on the ends of steel shear walls can decrease vertical displacement of the column in the first floor;(6) Use BIB as column member in concentrically braced frame can decrease vertical displacement of the column.

TG systems consist of columns and truss-girders. In this research we apply BIBs in truss-girders to improve ductility. Results obtained from this study are as follows:(1) It will be a better configuration to install BIBs on the bottom chords of both ends of truss girder in a frame;(2) BIBs on the bottom chords of both ends of truss girders in a frame cause the smaller displacement in the middle point of girders, and the structural behavior is better than that of ordinary moment resisting frames.

表 目 錄 III 圖 目 錄 V 第一章 緒論 1 1.1 BIB構材 1 1.2 BIB在自行復位系統之應用 2 1.2.1 自行復位系統 2 1.2.2 BIB在SC-CBF之應用 3 1.3 BIB與桁架梁 3 1.3.1 桁架梁 3 1.3.2 BIB在桁架梁之應用 4 1.4 研究範圍 4 第二章 結構桿件及構架之模擬 6 2.1 模型構架 6 2.1.1 SC-CBF - A系列構架 6 2.1.2 SC-CBF-B系列構架 6 2.1.3 TG系列構架 7 2.2 桿件元素及分析模型 7 2.2.1基本假設 7 2.2.2 桿件與接觸面之模擬 8 2.2.3 構架分析模型 10 2.3 構架載重 11 2.4 降伏準則 11 第三章 SC-CBF構架之受力行為 12 3.1 SC-CBF-A系列構架之受力行為 12 3.1.1 SC-CBF-A1構架之受力行為 12 3.1.2 SC-CBF-A2構架之受力行為 20 3.1.3 SC-CBF-A3構架之受力行為 26 3.1.4 SC-CBF-A系列構架比較 35 3.2 SC-CBF-B系列構架之受力行為 38 3.2.1 SC-CBF-B系列桿件之受力行為 38 3.2.2 SC-CBF-B系列構架之受力行為 38 第四章 TG構架之受力行為 42 4.1 TG構架之受力行為 42 4.1.1 TG-F1及TG-F2構架之遲滯行為 42 4.1.2 BIB設置位置對TG構架消散能量之影響 43 4.1.2 BIB設置之綜合探討 43 4.2 含垂直載重TG構架在反復載重下之行為 44 4.2.1 含垂直載重彎矩降伏構架(MRF)之受力行為 44 4.2.2 含垂直載重TG-F2構架之受力行為 45 4.2.3 MRF與TG-F2構架影響之探討 45 第五章 結論與建議 46 5.1 結論與建議 46 參考文獻 49

1. Chen , C. C. “Approaches to Improve Seismic Resistance of Steel Building Frame “ , Ph.D Dissertation , Department of Civil Engrg. , Lehigh University , Bethlehem , PA , June , 1991.
2. 陳正誠,「韌性同心斜撐構架與韌性斜撐構材之耐震行為與設計」,中華民國結構工程學會,結構工程,第15卷第1期,pp. 53-78,2000。
3. 陳正誠、王錦華、李文芳、林懿靜,「韌性斜撐構材之遲滯行為與分析模式」,中國土木水利工程學刊,Vol. 13,No.1,pp. 87-97,2001。
4. 蘇慶冺,「韌性同心斜撐構架之遲滯行為與斷裂預測」,碩士論文,國立台灣科技大學營建系,台北,民國八十九年七月,80頁。
5. Kurama, Y., Sause, R., Pessiki, S., and Lu, L.-W. “Lateral Load Behavior and Seismic Design of Unbonded Post-Tensioned Precast Walls,” ACI Structural Journal, Vol. 96(4), pp. 622-632, 1999.
6. Kurama, Y., Sause, R., Pessiki, S., and Lu, L.-W. “Seismic Response Evaluation of Unbonded Post-Tensioned Precast Walls,” ACI Structural Journal, Vol. 99(5), pp. 641-651, 2002.
7. El-Sheikh, M.T., Sause, R., Pessiki, S., and Lu, L.-W. “Seismic Behavior and Design of Unbonded Post-Tensioned Precast Concrete Frames,” PCI Journal, Vol. 44(3), pp. 54-71, 1999.
8. Ricles, J., Sause, R., Peng, S.W., and Lu, L.W. “Experimental Evaluation of Earthquake Resistant Posttensioned Steel Connections,” Journal of Structural Engineering, ASCE, Vol. 128(7), pp. 850-859, 2002.
9. Lee K.-S., Sause, R., and Ricles, J. “Development of Self-Concentrically-Braced Frame System,” National Center for Research on Earthquake Engineering, pp. 28-31, 2005.
10. Suzuki, T., Ogawa, T. and Kubodera, I. “Deformation Capacity of Steel Truss Frames under Earthquake.” Journal of Constructional Steel Research, Vol. 9, No. 2, 1988.

無法下載圖示 全文公開日期 2011/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE