簡易檢索 / 詳目顯示

研究生: 謝佩服
Pei-Fu Hsieh
論文名稱: 利用廢棄咖啡豆進行吸附臭氧效能評估
Evaluation of Spent Coffee Beans for Ozone Adsorption
指導教授: 溫琮毅
Tsrong-Yi Wen
口試委員: 蔣本基
Pen-Chi Chiang
李明哲
Ming-Jer Lee
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 臭氧廢棄咖啡吸附
外文關鍵詞: Ozone, Spent, Coffee, Adsorption
相關次數: 點閱:296下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

許多研究顯示,當人體暴露在臭氧濃度過高的環境下會引起許多健康問題,例如氣喘或其他呼吸道相關的疾病。活性碳由於比表面積高和具有某些化學特性,廣泛用於降低(吸附)臭氧濃度。活性碳是由含碳原料透過物理或化學活化法製備而成,某些研究甚至將咖啡轉換成活性碳。然而,這些製備過程需要專業技能與特定儀器,常常耗費大量成本和時間。因此,本論文提出一個新的想法:利用廢棄的咖啡直接用於降低(吸附)臭氧濃度。本論文除了討論咖啡吸附臭氧的效果之外,也探討咖啡吸附臭氧的機制。本論文將使用新鮮的咖啡粉和使用後的咖啡渣作為實驗組,商用活性碳作為對照組,分別置於通有臭氧的密閉容器內,並測量臭氧濃度。在特定的條件下比較峰值臭氧濃度的結果顯示,雖然活性碳能削減臭氧濃度38%~56%,但咖啡粉和咖啡渣也能削減臭氧濃度25%~44%。除此之外,比表面積以及孔隙分析指出活性碳比咖啡的比表面積多出數倍以上。此外,透過傅立葉轉換紅外線光譜分析可知咖啡中包含許多且會與臭氧發生化學反應的有機物。另外,從熱重分析結果可發現,咖啡在250°C 到550°C 期間中擁有明顯的碳化過程,而且有吸附過臭氧的材料的重量比比沒吸附過臭氧的材料的重量比稍微大一些。由這些分析結果可得知,咖啡吸附臭氧的機制主要為有機物與臭氧所形成的化學吸附,和孔洞與臭氧所形成的物理吸附。咖啡粉與咖啡渣吸附臭氧的能力並無太大差異,代表回收再利用咖啡渣吸附臭氧是一個經濟、環保、且有效的選擇。


Many studies have shown higher ozone concentration has been known to have a negative effect on human health such as asthma or respiratory diseases. Activated carbon has been widely used as a powerful adsorbent in ozone treatment due to the specific surface area and chemical characteristics. Activating carbonaceous materials by physical or chemical activation is commonly applied to produce activated carbon, however, requiring sophisticated skills and professional equipment that usually increases cost and time. This thesis presents a novel idea, to remove ozone using a spent carbonaceous material: coffee. In addition to the efficiency of coffee adsorbing ozone, this thesis shows the mechanism of coffee adsorbing ozone. Two types of coffee powder are tested: fresh coffee powder and spent coffee grounds (wastes). Both of them are compared with the commercial activated carbon. The results show that by placing some spent coffee in a chamber that is continuously supplied with an ozone flow, the peak ozone concentration can be lowered by 25% to 44% when compared with the case that is without the coffee. Such a reduction is competitive with a commercially available activated carbon at the same conditions, which is 38% to 56%. By the BET analysis, the specific surface areas of these two coffees are found to be smaller than that of the activated carbon. The analysis of the FTIR shows that the spent coffee contains organic compounds and the ozone adsorption by the coffee is likely chemical adsorption. Furthermore, the TGA analysis reveals that the coffee has a clear carbonization stage (250°C to 550°C) and the ozone-adsorbed materials have higher percent weights than theirs without ozone counterparts. According to these results, the mechanism of the chemical adsorption is mainly caused by organics reacting with ozone and the physical adsorption formed by surface pores attracting with ozone. The effectiveness of coffee powder and coffee grounds in adsorbing ozone is not much different. Using recycling coffee grounds to adsorb ozone is an economical, environmentally friendly, and effective choice.

致謝 ............................................................................................................................................ I 中文摘要 .................................................................................................................................. II ABSTRACT............................................................................................................................ III 目錄 ........................................................................................................................................... V 圖目錄 .................................................................................................................................... VII 表目錄 ..................................................................................................................................... IX 第一章 緒論 ............................................................................................................................1 1.1 研究背景 .................................................................................................................1 1.2 文獻探討 .................................................................................................................4 1.2.1 活性碳 .............................................................................................................4 1.2.2 咖啡渣 .............................................................................................................7 1.2.3 吸附理論 ....................................................................................................... 10 1.2.4 檢驗分析 ....................................................................................................... 12 1.3 研究目的 ............................................................................................................... 18 1.4 論文架構 ............................................................................................................... 18 第二章 實驗方法 ................................................................................................................... 20 2.1 臭氧生成器原理 ................................................................................................... 20 2.1.1 介質阻擋放電 (Dielectric Barrier Discharge, DBD) ................................. 20 VI 2.2 實驗方法 ............................................................................................................... 25 2.2.1 實驗參數−吸附材料 ...................................................................................... 25 2.2.2 實驗設置−量測臭氧濃度 .............................................................................. 26 2.2.3 實驗儀器 ....................................................................................................... 29 第三章 結果與討論 ............................................................................................................... 34 3.1 臭氧濃度實驗 ....................................................................................................... 34 3.1.1 吸附材料與臭氧濃度之削減曲線 ................................................................. 34 3.2 吸附材料檢驗分析 ............................................................................................... 39 3.2.1 吸附材料之檢驗 − 傅立葉轉換紅外線光譜 (FTIR) ................................ 39 3.2.2 吸附材料之檢驗 – 拉曼光譜分析 (RMS) ................................................ 45 3.2.3 吸附材料之檢驗 − 比表面積及孔隙分析 (BET) ..................................... 47 3.2.4 吸附材料之檢驗 − 熱重分析 (TGA) ........................................................ 48 3.2.5 吸附材料之檢驗 – 掃描式電子顯微分析 (SEM) ..................................... 51 3.2.6 吸附材料之檢驗 − 能量散射光譜分析 (EDS) ........................................ 55 第四章 結論與建議 ............................................................................................................... 56 4.1 結論....................................................................................................................... 56 4.2 建議與未來工作 ................................................................................................... 57 參考文獻 .................................................................................................................................. 58

[1] M. Kampa and E. Castanas, "Human health effects of air pollution," Environmental
Pollution, vol. 151, no. 2, pp. 362-367, 2008.
[2] B. Malkin, G. Perlov, and S. Yannai, "Ozone applications for disinfection, purification and deodorization," ed: Google Patents, 2002.
[3] C. J. Weschler, "Ozone in indoor environments: concentration and chemistry," Indoor Air, vol. 10, no. 4, pp. 269-288, 2000.
[4] M. L. Bell, F. Dominici, and J. M. Samet, "A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality, and air pollution study," Epidemiology (Cambridge, Mass.), vol. 16, no. 4, p. 436, 2005.
[5] J. Fuhrer and F. Booker, "Ecological issues related to ozone: agricultural issues,"
Environment International, vol. 29, no. 2-3, pp. 141-154, 2003.
[6] H. Marsh and F. R. Reinoso, Activated carbon. Elsevier, 2006.
[7] O. Ioannidou and A. Zabaniotou, "Agricultural residues as precursors for activated carbon production—a review," Renewable and Sustainable Energy Reviews, vol. 11, no. 9, pp.
1966-2005, 2007.
[8] X. Wang, N. Zhu, and B. Yin, "Preparation of sludge-based activated carbon and its
application in dye wastewater treatment," Journal of Hazardous Materials, vol. 153, no. 1-
2, pp. 22-27, 2008.
[9] S. Sircar, T. Golden, and M. Rao, "Activated carbon for gas separation and storage,"
Carbon, vol. 34, no. 1, pp. 1-12, 1996.
[10] F. X. Mueller, L. Loeb, and W. H. Mapes, "Decomposition rates of ozone in living areas," Environmental Science & Technology, vol. 7, no. 4, pp. 342-346, 1973.
[11] P. Lee and J. Davidson, "Evaluation of activated carbon filters for removal of ozone at the PPB level," American Industrial Hygiene Association Journal, vol. 60, no. 5, pp. 589-600, 1999.
[12] L. F. Ballesteros, M. A. Cerqueira, J. A. Teixeira, and S. I. Mussatto, "Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment," Carbohydrate Polymers, vol. 127, pp. 347-354, 2015.
[13] R. Campos-Vega, G. Loarca-Pina, H. A. Vergara-Castañeda, and B. D. Oomah, "Spent
coffee grounds: A review on current research and future prospects," Trends in Food Science & Technology, vol. 45, no. 1, pp. 24-36, 2015.
[14] S. I. Mussatto, L. M. Carneiro, J. P. Silva, I. C. Roberto, and J. A. Teixeira, "A study on chemical constituents and sugars extraction from spent coffee grounds," Carbohydrate Polymers, vol. 83, no. 2, pp. 368-374, 2011.
[15] A. L. d. Souza et al., "Casca de café em dietas de carneiros: consumo e digestibilidade," Revista Brasileira de Zootecnia, 2004.
[16] D. García-García, A. Carbonell, M. Samper, D. García-Sanoguera, and R. Balart, "Green
composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG)
powder," Composites part B: engineering, vol. 78, pp. 256-265, 2015.
[17] I. Anastopoulos, M. Karamesouti, A. C. Mitropoulos, and G. Z. Kyzas, "A review for
coffee adsorbents," Journal of Molecular Liquids, vol. 229, pp. 555-565, 2017. 59
[18] V. Boonamnuayvitaya, S. Sae-ung, and W. Tanthapanichakoon, "Preparation of activated
carbons from coffee residue for the adsorption of formaldehyde," Separation and Purification Technology, vol. 42, no. 2, pp. 159-168, 2005.
[19] K. Kante, C. Nieto-Delgado, J. R. Rangel-Mendez, and T. J. Bandosz, "Spent coffee-based activated carbon: specific surface features and their importance for H2S separation
process," Journal of Hazardous Materials, vol. 201, pp. 141-147, 2012.
[20] 林达, 谢水波, 姜赛红, 王劲松, and 杨晶, "重金属生物吸附研究进展," 铀矿冶, vol. 26,
no. 2, pp. 96-100, 2007.
[21] N. Azouaou, Z. Sadaoui, A. Djaafri, and H. Mokaddem, "Adsorption of cadmium from
aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics," Journal of Hazardous Materials, vol. 184, no. 1-3, pp. 126-134, 2010.
[22] J. Rivera-Utrilla and M. Sánchez-Polo, "The role of dispersive and electrostatic interactions in the aqueous phase adsorption of naphthalenesulphonic acids on ozone-treated activated carbons," Carbon, vol. 40, no. 14, pp. 2685-2691, 2002.
[23] O. Kazak, Y. R. Eker, H. Bingol, and A. Tor, "Novel preparation of activated carbon by cold oxygen plasma treatment combined with pyrolysis," Chemical Engineering Journal,
vol. 325, pp. 564-575, 2017.
[24] Y. Takeuchi and T. Itoh, "Removal of ozone from air by activated carbon treatment,"
Separations Technology, vol. 3, no. 3, pp. 168-175, 1993.
[25] U. Kogelschatz, "Filamentary, patterned, and diffuse barrier discharges," IEEE
Transactions on Plasma Science, vol. 30, no. 4, pp. 1400-1408, 2002.
[26] A. Fridman, A. Chirokov, and A. Gutsol, "Non-thermal atmospheric pressure discharges," Journal of Physics D: Applied Physics, vol. 38, no. 2, p. R1, 2005.
[27] U. Kogelschatz, "Dielectric-barrier discharges: their history, discharge physics, and
industrial applications," Plasma Chemistry and Plasma Processing, vol. 23, no. 1, pp. 1-
46, 2003.
[28] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, New York, 2004.
[29] K. Bulanin, J. Lavalley, and A. Tsyganenko, "IR spectra of adsorbed ozone," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 101, no. 2-3, pp. 153-158,
1995.
[30] P. S. Bailey, J. E. Batterbee, and A. G. Lane, "Ozonation of benz [a] anthracene," Journal of the American Chemical Society, vol. 90, no. 4, pp. 1027-1033, 1968.
[31] F. J. Beltran, G. Ovejero, J. F. Garcia-Araya, and J. Rivas, "Oxidation of polynuclear aromatic hydrocarbons in water. 2. UV radiation and ozonation in the presence of UV radiation," Industrial & Engineering Chemistry Research, vol. 34, no. 5, pp. 1607-1615, 1995.
[32] M. Iqbal, A. Saeed, and S. I. Zafar, "FTIR spectrophotometry, kinetics and adsorption
isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of
Cd2+ and Pb2+ removal by mango peel waste," Journal of Hazardous Materials, vol. 164,
no. 1, pp. 161-171, 2009.
[33] O. Paris, C. Zollfrank, and G. A. Zickler, "Decomposition and carbonisation of wood
biopolymers—a microstructural study of softwood pyrolysis," Carbon, vol. 43, no. 1, pp.
53-66, 2005.
[34] P. Alvarez, J. Garcia-Araya, F. Beltrán, F. Masa, and F. Medina, "Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions," Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 503-512, 2005.
[35] R. Tsunoda, T. Ozawa, and J.-i. Ando, "Ozone treatment of coal-and coffee grounds-based active carbons: water vapor adsorption and surface fractal micropores," Journal of Colloid and Interface Science, vol. 205, no. 2, pp. 265-270, 1998.
[36] M. Plaza, A. González, C. Pevida, J. Pis, and F. Rubiera, "Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications," Applied Energy, vol. 99, pp. 272-279, 2012.
[37] M. Sánchez-Polo, U. von Gunten, and J. Rivera-Utrilla, "Efficiency of activated carbon to transform ozone into OH radicals: influence of operational parameters," Water Research, vol. 39, no. 14, pp. 3189-3198, 2005.
[38] 柯彥竹, "改質咖啡渣對環境污染物吸附特性之研究," 碩士論文, 桃園創新技術學院, 2016.
[39] L. Li, W. Ye, Q. Zhang, F. Sun, and P. Lu, "Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon," Journal of Hazardous Materials, vol. 170, no. 1, pp. 411-416, 2009.

QR CODE