簡易檢索 / 詳目顯示

研究生: 楊淞富
Shung-fu Yang
論文名稱: 任意形狀螺旋彈簧動靜態之有限元素分析
Static and Dynamic Finite Element Analysis of Helical Springsof Arbitrary Shapes
指導教授: 廖崇禮
Chung-Li Liao
口試委員: 呂森林
Sen-Lin Lu
蔡哲雄
Jer-Shyong Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 142
中文關鍵詞: 有限元素法
外文關鍵詞: finite element
相關次數: 點閱:129下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

根據Wittrick的12條微分方程式並且加入溫度效應,本文利用Rayleigh-Ritz方法建立了空間曲樑結構的一維有限元素運動方程式,以使用在螺旋彈簧的分析。對圓柱形螺旋彈簧靜態問題,本文修正之Wittrick的12條微分方程式可利用轉置矩陣法(transfer matrix method)解得其正解。由此正解之位移函數(displacement functions)可求得本文彈簧元素之內插函數,以使用在本文建立之有限元素方程式中求取元素之質量矩陣、勁度矩陣與熱負荷向量等。本文建立之有限元素分析模式分別使用於圓柱形與非圓柱形螺旋彈簧的靜態問題及自然頻率與模態分析。為簡化分析,本文以圓柱形螺旋彈簧元素來模擬非圓柱形螺旋彈簧。因此模擬非圓柱形螺旋彈簧的每個元素之曲率為固定,但彼此間並不相同。當使用的元素數目增加,此種簡化作法所導致的幾何誤差可以減小。本文靜態問題分析中圓柱形與非圓柱形螺旋彈簧除承受機械力外另考慮承受溫度變化。本文有限元素分析結果並與正解和文獻中其他彈簧元素的結果比較。由數值結果可展現本文螺旋彈簧元素的準確性與效率。同時本文亦探討ㄧ些參數對三種非圓柱形螺旋彈簧自然振動頻率的影響。


Following the Wittrick’s twelve differential equations modified with including the temperature effect, the present study uses the Rayleigh-Ritz method to develop the one-dimensional finite element equations of motion for the spatial curved beams which can be used in the analysis of helical springs. For the static problems of cylindrical helical springs, the modified Wittrick’s twelve differential equations can be solved for the exact solutions by the transfer matrix method. The displacement functions in the exact solutions are used to derive the interpolation functions which are used in the computation of the mass, stiffness matrices and thermal load of the present spring element. The present finite element model is applied in the static problems and free vibration analyses of cylindrical and non-cylindrical helical springs, respectively. To simplify the analysis, the non-cylindrical helical springs are modeled with the cylindrical helical elements attached sequentially to each other. Hence, constant but different curvature is assumed for each element of a non-cylindrical helical spring, and the geometric error incurred can be reduced if the number of elements is increased. In the present static analysis, the cylindrical and non-cylindrical helical springs subjected to uniform temperature change are also considered. The present model performance is compared with that of exact solutions and other finite element in the literature. The accuracy and efficiency of the present spring element are demonstrated through the numerical results. Also the effects of some parameters on the natural frequencies of three types of non-cylindrical helical springs and investigated.

摘要 I ABSTRACT II 誌謝 III 目錄 V 附圖索引 VII 附表索引 X 符號表 XII 第一章 緒論 1 1.1 前言 1 1.1.1 彈簧的種類 2 1.1.2 彈簧的物理性質 4 1.2 文獻回顧 5 1.3 研究目的與內容 9 第二章 建立任意形狀螺旋彈簧之運動方程式 10 2.1 任意形狀螺旋彈簧的幾何方程式 11 2.1.1 空間曲線之路徑座標系統(path coordinate system) 11 2.1.2 Frenet-Serret 公式 13 2.1.3 任意形狀螺旋彈簧的幾何方程式推導 14 2.2 任意形狀螺旋彈簧之簧圈半徑推導 17 2.2.1 桶形與雙曲面形螺旋彈簧之簧圈半徑推導 18 2.2.2 圓錐形螺旋彈簧之簧圈半徑推導 18 2.3 任意形狀螺旋彈簧之運動方程式 20 2.3.1 任意形狀螺旋彈簧的本構與靜平衡方程式 20 2.3.2 推導任意形狀螺旋彈簧之運動方程式 24 第三章 任意形狀螺旋彈簧之有限元素運動方程式推 29 3.1 建立圓柱形螺旋彈簧元素之力與位移向量函數 29 3.2 有限元素運動方程式 33 3.2.1 任意形狀螺旋彈簧有限元素運動方程式推導 33 3.2.2 任意形狀螺旋彈簧元素矩陣與力向量之估算 38 3.3 轉置矩陣法求解靜態問題 42 第四章 任意形狀螺旋彈簧靜態實例分析與結果 45 4.1 圓柱形螺旋彈簧靜態問題分析 45 4.2 雙曲面形、圓錐形與桶形螺旋彈簧靜態問題分析 54 第五章 任意形狀螺旋彈簧動態實例分析與結果 70 5.1 圓柱形螺旋彈簧動態問題分析 70 5.2 雙曲面形、圓錐形與桶形螺旋彈簧動態問題分析 89 第六章 結論與建議 117 參考文獻 119

1. W. H. Wittrick , “On elastic wave propagation in helical springs”, International Journal of Mechanical Sciences 8, pp. 25-47(1966).

2. Y. Kagawa, “On the dynamical properties of helical springs of finite length with small pitch”, J. Sound Vib. 8,1(1968).

3. M. F. Massoud, “On the coefficient matrix of a cross-section of a vibrating curved and twisted non-prismatic space thin beam”, International Journal of Mechanical Sciences 12, pp.327-340(1970)

4. J. W. Phillips and G. A. Costello , “Large deflections of impacted helical springs”, J. Acoust. Soc. Am. 51 , pp. 967-973(1972).

5. G. A. Costello, “Radial expansion of impacted helical springs”, J. Appl. Mech. Trans. ASME 42, pp. 789-792 (1975).

6. N. C. Huang ,“Theories of elastic slender curved rods”, J. Appl. Math. Phys. (ZAMP) 24,1-18(1973).

7. S. K. Sinsha and G. A. Costello, “The numerical solution of the dynamic response of helical springs”, IJNME 12, pp. 949-961(1978).

8. J. E. Mottershead , “Finite elements for dynamical analysis of helical rods”, International Journal of Mechanical Sciences 22, pp. 267-283 (1980).

9. L. Della Pietra and S. Della Valle, “On the dynamic behaviour of axially excited helical springs”, Meccanica, 17, pp. 31-43(1982).

10. D. Pearson, “The transfer matrix method for the vibration of compressed helical springs”, Journal of Mechanical Engineering Science 24, pp. 163-171(1986).

11. D. Pearson and W. H. Wittrick, “An exact solution for the vibration of helical springs using a Bernoulli-Euler model”, International Journal of Mechanical Sciences 28, pp. 83-96(1986).
12. Y. Lin. and A. P. Pisano, “General dynamic equations of helical springs with static solution and experimental verification”, ASME J. Appl. Mech. 54, pp. 910-916(1987).

13. V. Haktanir and E. Kiral , “Determination of free vibration frequencies of helical springs by the Myklestad method”, Proc. 4th National Symp. on Machinery Theory, Istanbul, September, pp.479-488(1990).

14. W. Jiang, W. Jones, K. Wu and T. Wang , “Non-linear and linear, static, and dynamic analyses of helical springs”, 1989 Proceeding of the 30th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Mobile, pp. 386-395(1989).

15. W. Jiang, W. K. Jones, T. L. Wang and K. H. Wu, “Free vibration of helical springs”, transactions of the ASME 58, pp. 222-228(1991).

16. L. E. Becker and W. L. Cleghorn, “On the buckling of helical compression springs”, International Journal of Mechanical Sciences 34, pp. 275(1992).

17. V. Yildirim , “Investigation of parameters affecting free vibration frequency of helical springs”, International Journal for Numerical Methods in Engineering 39, pp. 99-114(1996).

18. G. G. Chassie, LE. Becker , and WL. Cheghorn, “On the buckling of helical springs under combined compression and torsion”, International Journal for Mechanical Sciences 39, pp. 697-704(1996).

19. V. Yildirim , “Free Vibration analysis of non-cyklindrical coil springs by combined use of the transfer matrix and the complementary functions methods” Communications in Numerical Methods in Engineering

20. Kim. Dojoong, “Development of a finite element program for dynamic analysis of helical springs”, IEEE Mechanics, KORUS’99 , 309-314(1999).

21. L. E. Becker , G. G. Chassie and W. L. Cleghorn, “On the natural frequencies compression springs”, International Journal of Mechanical Sciences 44, pp. 825-841(2002).

22. K. Nagaya, S. Takeda and Y. Nakata , “Free vibration of coil spring of arbitrary shape”, International Journal for Numerical Methods in Engineering 23, pp. 1081-1099(1986).

23. V. Yildirim , “The Myklested method for the free vibration of non-cylindrical helical springs (in Turkish)”, Turkish Journal of Engineering and Environmental Science 20, pp. 121-128(1996).

24. 賴俊豪,“圓柱形螺旋彈簧動靜態之有限元素分析”,國立台灣科技大學機械工程研究碩士論文,2006年7月。

25. J. N. Reddy ,“ An introduction to the Finite Element Method”, Third Edition., New York:McGraw Hill(2006).

26. V. Yildirim and N. Ince , “ Natural frequencies of helical springs of arbitrary shape”, Journal of Sound and Vibration 204, pp. 311-329(1997).

27. Mott 編著,黃仁明 編譯,“機械元件設計”,全華科技圖書股份有限公司 印行。

28. 黃主德 主編,林金鎮 陳常成 戴義國 校定,“機械元件設計”,文京圖書股份有限公司,總經銷大揚出版社。

29. 張智星 編著,“MATLAB 程式設計與應用”,清蔚科技股份有限公司 出版。

QR CODE