簡易檢索 / 詳目顯示

研究生: 張傑富
Jie-Fu Chang
論文名稱: 腰椎椎弓足螺絲之多目標最佳化設計:有限元素分析與生物力學測試
Multiobjective Optimizational Study of Lumbar Pedicle Screw:Finite Element Analysis and Biomechanical Test
指導教授: 趙振綱
Ching-Kong Chao
林晉
Jinn Lin
口試委員: 徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 109
中文關鍵詞: 椎弓足螺絲有限元素法田口品質工程法線性迴歸類神經網路法遺傳演算法生物力學測試
外文關鍵詞: Pedicle Screw, Finite Element Analysis, Taguchi method, Linear regression, Artificial Neural Networks, Genetic Algorithms, Biomechanical test
相關次數: 點閱:349下載:39
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前脊椎內固定器已廣泛地使用在治療脊椎外傷、病變及退化等手術,其中椎弓足螺絲為脊椎內固定器的重要元件之一。但從醫學臨床中發現,在治療過程中脊椎內固定器發生失效(failure)的模式為椎弓足螺絲發生破裂(breakage),以及椎弓足螺絲與椎體產生鬆脫(loosening),而不同的骨螺絲幾何,也會影響骨螺絲之彎曲強度以及與椎體的結合強度,因此可以找出同時保有彎曲強度與拉出強度的椎弓足螺絲幾何是脊椎內固定器的設計重點之一。
    本研究將利用有限元素法使用最壞情況(worst-case)來模擬骨螺絲的破壞與鬆脫情況,使用田口品質工程法與L25直交表來探討椎弓足螺絲幾何的重要參數,接著將使用線性迴歸與類神經網路來求得所需之彎曲強度與拉出強度之目標函數,並導入遺傳演算法中,利用適應方程式合併此兩種目標函數找出每個參數的最佳化範圍,本研究的目的為找出最佳化設計之椎弓足螺絲,並利用生物力學測試與四種市售椎弓足螺絲進行比較。
    本研究結果顯示,單獨針對彎曲強度而言,圓錐起始位置與內徑為其重要的設計參數,若針對抗拉出強度而言,內徑、近端根部弧角半徑及節距是重要的設計參數;由類神經網路所求得之彎曲強度與拉出強度性質之目標函數,較線性迴歸所求得之目標函數,有較低的誤差,且與有限元素結果相關係數都相當接近1;經遺傳演算法的最佳化演算後,圓錐起始位置的最佳值為0mm、內徑為3.8mm∼4.06mm、近端根部弧角半徑為0.4mm、節距為3.3mm、近端傾斜半角為5°、螺牙厚度為0.1mm;於生物力學測試部分,最佳化椎弓足螺絲有最高的降伏強度(1085N)與疲勞壽命(大於一百萬次),其次為A-Spine骨螺絲(1008N,46529 cycle),且有限元素模擬之總應變能與降伏強度之相關係數為-0.866、最大張應力與疲勞壽命之相關係數為-0.909;而於拉出強度部分,Synthes骨螺絲於0.16 g/cm3及 0.32 g/cm3 密度之人造假骨中有最高的拉出強度(1014N,2148N),其次為A-Spine骨螺絲(975N,2068N),再其次為最佳化骨螺絲(826N,2009N),且與有限元素模擬之總反作用力之相關係數為0.929與0.988;由本研究所找出之最佳化椎弓足螺絲可以同時保有90%以上的彎曲強度與拉出強度,且本研究所建立之有限元素模型可以有效的預測生物力學測試。
    關鍵字:椎弓足螺絲、有限元素法、田口品質工程法、線性迴歸、類神經網路法、遺傳演算法、生物力學測試


    Spinal instrumentations have been widely used to treat spinal trauma, diseases, and degradation. Clinically, breakage and loosening of the pedicle screws are the most important problems for fixation failure. Pedicle screw design can affect the bending and the pullout strength substantially. Therefore design of the pedicle screws should consider both bending strength and pullout strength simultaneously.
    The bending strength and pullout strength were contradictory to each other. The purpose of this study was to find the optimal design of the pedicle screw by multiobjective optimization methods. The worst case scenario in clinical conditions was simulated using finite element analyses. Taguchi method and L25 orthogonal array were used to create the set of learning data for artificial neural network (ANN) and then the contribution of each design parameter was calculated by analysis of variance (ANOVA). Artificial neural network (ANN) and Multiple Linear Regression (MLR) were used to develop two objective functions. Then genetic algorithm (GA) was used to obtain the optimal design of the screws. Then mechanical tests were conducted on four different commercial screws to validate the results of mathematical analyses.
    The results showed that for bending strength, the initial position of conical angle (IP) was the most important factor and the second was inner diameter (ID). For pullout strength, the inner diameter (ID), proximal root radius (PRR) and pitch (Pi) were the most important design factors. As the objective functions, ANN could achieve better results for both bending and pullout strength than MLR. In GA section, the optimal values or ranges were 0 mm for IP, 3.8∼4.06 mm for ID, 0.4 mm for PRR, 3.3 mm for Pi, 5°for proximal half angle and 0.1 mm for thread width. The results of mechanical experiments showed the optimal screw had the highest yielding strength(1085N)and fatique life (over than one million cycle), the second was A-Spine(1008N,46529 cycle), total strain energy and maximal tensile stress in finite element analysis were closely related to yielding strength(r = -0.86)and fatique life(r = -0.909).For pullout strength in 0.16 g/cm3 and 0.32 g/cm3 foam bone, Synthes screw was the highest (1014N, 2148N)and the second was A-spine (975N, 2068N), and the optimal screw was the third(826N, 2009N)respectively. And the total reaction force in finite element analysis was closed relate to the pullout strength(r = 0.929 and r = 0.988 for different foam densities).
    The optimal screw from our method had a high performance for both the bending strength and pullout strength, over than 90% of the highest value. The finite element analyses could reliably predict the results of mechanical test.

    Key Words: Pedicle Screw, Finite Element Analysis, Taguchi method, Linear regression, Artificial Neural Networks, Genetic Algorithms, Biomechanical test

    中文摘要------------------------------I ABSTRACT-----------------------------II 誌 謝-----------------------------IV 目 錄------------------------------V 符號索引---------------------------VIII 圖表索引------------------------------X 第一章 緒論---------------------------1 1.1研究背景、動機與目的---------------1 1.2脊椎解剖構造簡介-------------------2 1.3椎弓足螺絲植入過程-----------------3 1.4文獻回顧---------------------------4 1.4.1彎曲強度-------------------------4 1.4.2拉出強度-------------------------5 1.4.3最佳化方法-----------------------6 1.5本文架構---------------------------6 第二章 材料與方法--------------------10 2.1研究流程--------------------------10 2.2有限元素法------------------------11 2.2.1彎曲強度分析--------------------14 2.2.2拉出強度分析--------------------22 2.3 田口品質工程法-------------------24 2.4 線性迴歸-------------------------28 2.5 類神經網路法---------------------29 2.6 遺傳演算法-----------------------35 2.7 生物力學測試---------------------37 2.7.1 椎弓足螺絲介紹-----------------37 2.7.2植入試片------------------------38 2.7.3測試儀器------------------------38 2.7.4彎曲強度之生物力學測試----------39 2.7.5拉出強度之生物力學測試----------40 2.7.6生物力學統計--------------------40 第三章 結果--------------------------43 3.1有限元素模擬結果------------------43 3.1.1彎曲強度分析結果----------------43 3.1.2拉出強度分析結果----------------47 3.2田口方法變異數分析結果------------51 3.2.1彎曲強度分析結果----------------51 3.2.2拉出強度分析結果----------------51 3.3線性迴歸分析結果------------------56 3.4類神經網路結果--------------------59 3.5遺傳演算法結果--------------------64 3.6生物力學測試結果------------------66 3.6.1椎弓足螺絲之降伏負載測試結果----66 3.6.2椎弓足螺絲之疲勞強度測試結果----67 3.6.3椎弓足螺絲之拉出強度測試結果----68 第四章 討論--------------------------77 第五章 結論與未來展望----------------82 5.1結論------------------------------82 5.2未來展望--------------------------83 參考文獻-----------------------------84 附錄---------------------------------88 作者簡介----------------------------109

    [1]Zhu Q. G., Lu W. W., Holmes A. D., Zheng Y. G., Zhong S. Z., and Leong J. C. Y., "The effects of cyclic loading on pull-out strength of sacral screw fixation - An in vitro biomechanical study," Spine, vol. 25, pp. 1065-1069, May (2000)
    [2]Matsuzaki H., Tokuhashi Y., Matsumoto F., Hoshino M., Kiuchi T., and Toriyama S., "Problems and solutions of pedicle screw plate fixation of lumbar spine," Spine (Phila Pa 1976), vol. 15, pp. 1159-65, Nov (1990)
    [3]Wetzel F. T., Brustein M., Phillips F. M., and Trott S., "Hardware failure in an unconstrained lumbar pedicle screw system. A 2-year follow-up study," Spine (Phila Pa 1976), vol. 24, pp. 1138-43, Jun 1 (1999)
    [4]Lieberman I. H., Khazim R., and Woodside T., "Anterior vertebral body screw pullout testing: A comparison of Zielke, Kaneda, Universal Spine System, and Universal Spine System with pullout- resistant nut," Spine, vol. 23, pp. 908-910, (1998)
    [5]Stambough J. L., El Khatib F., Genaidy A. M., and Huston R. L., "Strength and fatigue resistance of thoracolumbar spine implants: an experimental study of selected clinical devices," J Spinal Disord, vol. 12, pp. 410-4, Oct (1999)
    [6]Cho D. Y., Lee W. Y., and Sheu P. C., "Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation," Neurosurgery, vol. 53, pp. 1354-60; discussion 1360-1, Dec (2003)
    [7]Kim K., Park W. M., Kim Y. H., and Lee S., "Stress analysis in a pedicle screw fixation system with flexible rods in the lumbar spine," Proc Inst Mech Eng H, vol. 224, pp. 477-85, (2010)
    [8]Lonstein J. E., Denis F., Perra J. H., Pinto M. R., Smith M. D., and Winter R. B., "Complications associated with pedicle screws," J Bone Joint Surg Am, vol. 81, pp. 1519-28, Nov (1999)
    [9]Yerby S. A., Ehteshami J. R., and McLain R. F., "Loading of pedicle screws within the vertebra," J Biomech, vol. 30, pp. 951-4, Sep (1997)
    [10]Lotz J. C., Hu S. S., Chiu D. F., Yu M., Colliou O., and Poser R. D., "Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine," Spine (Phila Pa 1976), vol. 22, pp. 2716-23, Dec 1 (1997)
    [11]Hashemi A., Bednar D., and Ziada S., "Pullout strength of pedicle screws augmented with particulate calcium phosphate: An experimental study," Spine Journal, vol. 9, pp. 404-410, (2009)
    [12]Hasegawa K., Takahashi H. E., Uchiyama S., Hirano T., Hara T., Washio T., Sugiura T., Youkaichiya M., and Ikeda M., "An experimental study of a combination method using a pedicle screw and laminar hook for the osteoporotic spine," Spine (Phila Pa 1976), vol. 22, pp. 958-62; discussion 963, May 1 (1997)
    [13]Pfeiffer M., Gilbertson L. G., Goel V. K., Griss P., Keller J. C., Ryken T. C., and Hoffman H. E., "Effect of specimen fixation method on pullout tests of pedicle screws," Spine (Phila Pa 1976), vol. 21, pp. 1037-44, May 1 (1996)
    [14]Sterba W., Kim D. G., Fyhrie D. P., Yeni Y. N., and Vaidya R., "Biomechanical analysis of differing pedicle screw insertion angles," Clinical Biomechanics, vol. 22, pp. 385-391, (2007)
    [15]Pihlajamaki H., Myllynen P., and Bostman O., "Complications of transpedicular lumbosacral fixation for non-traumatic disorders," J Bone Joint Surg Br, vol. 79, pp. 183-9, Mar (1997)
    [16]Park J. B., "Mechanical performance of the new posterior spinal implant: Effect of materials, connecting plate, and pedicle screw design - Point of view," Spine, vol. 28, p. 887, (2003)
    [17]Pienkowski D., Stephens G. C., Doers T. M., and Hamilton D. M., "Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants," Spine (Phila Pa 1976), vol. 23, pp. 782-8, Apr 1 (1998)
    [18]Hsu C. C., Chao C. K., Wang J. L., Hou S. M., Tsai Y. T., and Lin J., "Increase of pullout strength of spinal pedicle screws with conical core: Biomechanical tests and finite element analyses," Journal of Orthopaedic Research, vol. 23, pp. 788-794, (2005)
    [19]游祥明、宋晏仁、古宏海、傅毓秀、林光華,解剖學,華杏出版股份有限公司,台北,(2005)。
    [20]Fogel G. R. M. D., Reitman C. A. M. D., Liu W. P., and Esses S. I. M. D., "Physical Characteristics of Polyaxial-Headed Pedicle Screws and Biomechanical Comparison of Load With Their Failure," Spine, vol. 28, pp. 470-473, (2003)
    [21]Chao C. K., Hsu C. C., Wang J. L., and Lin J., "Increasing bending strength of tibial locking screws: Mechanical tests and finite element analyses," Clinical Biomechanics, vol. 22, pp. 59-66, (2007)
    [22]DeCoster T. A., Heetderks D. B., Downey D. J., Ferries J. S., and Jones W., "Optimizing bone screw pullout force," J Orthop Trauma, vol. 4, pp. 169-74, (1990)
    [23]Oktenoglu B. T., Ferrara L. A., Andalkar N., Ozer A. F., Sarioglu A. C., and Benzel E. C., "Effects of hole preparation on screw pullout resistance and insertional torque: a biomechanical study," J Neurosurg, vol. 94, pp. 91-6, Jan (2001)
    [24]Abshire B. B., McLain R. F., Valdevit A., and Kambic H. E., "Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out," Spine Journal, vol. 1, pp. 408-414, (2001)
    [25]Chao C. K., Hsu C. C., Wang J. L., and Lin J., "Increasing bending strength and pullout strength in conical pedicle screws: Biomechanical tests and finite element analyses," Journal of Spinal Disorders and Techniques, vol. 21, pp. 130-138, (2008)
    [26]Davim J. P., "An experimental study of the tribological behaviour of the brass/steel pair," Journal of Materials Processing Technology, vol. 100, pp. 273-277, (2000)
    [27]Taga I., Funakubo A., and Fukui Y., "Design and Development of an Artificial Implantable Lung using Multiobjective Genetic Algorithm: Evaluation of Gas Exchange Performance," ASAIO Journal, vol. 51, pp. 92-102, (2005)
    [28]Hsu C. C., Chao C. K., Wang J. L., and Lin J., "Multiobjective optimization of tibial locking screw design using a genetic algorithm: Evaluation of mechanical performance," Journal of Orthopaedic Research, vol. 24, pp. 908-916, (2006)
    [29]賴育良,ansys電腦輔助工程分析,儒林圖書有限公司,台北市,(1997)。
    [30]徐慶琪,骨螺絲之結構設計與生物力學分析,國立台灣科技大學機械工程研究所博士論文,(2005)。
    [31]張季娜,田口式品質工程導論, 中華民國品質學會,台北市,(2003)。
    [32]王進德編著,類神經網路與模糊控制理論入門與應用,全華科技圖書股份有限公司,台北,(2007)。
    [33]林昇甫、徐永吉,遺傳演算法及其應用 Advanced design of experiments ,五南圖書出版股份有限公司,臺北市,(2009)。
    [34]Krenn M. H., Piotrowski W. P., Penzkofer R., and Augat P., "Influence of thread design on pedicle screw fixation. Laboratory investigation," J Neurosurg Spine, vol. 9, pp. 90-5, Jul (2008)
    [35]Conrad B. P., Cordista A. G., Horodyski M., and Rechtine G. R., "Biomechanical evaluation of the pullout strength of cervical screws," J Spinal Disord Tech, vol. 18, pp. 506-10, Dec (2005)
    [36]Lin J. and Hou S. M., "Bending strength and holding power of a prototype tibial locking screw," Clin Orthop Relat Res, pp. 232-9, Oct (2002)

    QR CODE